Actual source code: dm.c
1: #include <petscvec.h>
2: #include <petsc/private/dmimpl.h>
3: #include <petsc/private/dmlabelimpl.h>
4: #include <petsc/private/petscdsimpl.h>
5: #include <petscdmplex.h>
6: #include <petscdmceed.h>
7: #include <petscdmfield.h>
8: #include <petscsf.h>
9: #include <petscds.h>
11: #ifdef PETSC_HAVE_LIBCEED
12: #include <petscfeceed.h>
13: #endif
15: PetscClassId DM_CLASSID;
16: PetscClassId DMLABEL_CLASSID;
17: PetscLogEvent DM_Convert, DM_GlobalToLocal, DM_LocalToGlobal, DM_LocalToLocal, DM_LocatePoints, DM_Coarsen, DM_Refine, DM_CreateInterpolation, DM_CreateRestriction, DM_CreateInjection, DM_CreateMatrix, DM_CreateMassMatrix, DM_Load, DM_View, DM_AdaptInterpolator, DM_ProjectFunction;
19: const char *const DMBoundaryTypes[] = {"NONE", "GHOSTED", "MIRROR", "PERIODIC", "TWIST", "DMBoundaryType", "DM_BOUNDARY_", NULL};
20: const char *const DMBoundaryConditionTypes[] = {"INVALID", "ESSENTIAL", "NATURAL", "INVALID", "INVALID", "ESSENTIAL_FIELD", "NATURAL_FIELD", "INVALID", "INVALID", "ESSENTIAL_BD_FIELD", "NATURAL_RIEMANN", "DMBoundaryConditionType", "DM_BC_", NULL};
21: const char *const DMBlockingTypes[] = {"TOPOLOGICAL_POINT", "FIELD_NODE", "DMBlockingType", "DM_BLOCKING_", NULL};
22: const char *const DMPolytopeTypes[] =
23: {"vertex", "segment", "tensor_segment", "triangle", "quadrilateral", "tensor_quad", "tetrahedron", "hexahedron", "triangular_prism", "tensor_triangular_prism", "tensor_quadrilateral_prism", "pyramid", "FV_ghost_cell", "interior_ghost_cell",
24: "unknown", "unknown_cell", "unknown_face", "invalid", "DMPolytopeType", "DM_POLYTOPE_", NULL};
25: const char *const DMCopyLabelsModes[] = {"replace", "keep", "fail", "DMCopyLabelsMode", "DM_COPY_LABELS_", NULL};
27: /*@
28: DMCreate - Creates an empty `DM` object. `DM`s are the abstract objects in PETSc that mediate between meshes and discretizations and the
29: algebraic solvers, time integrators, and optimization algorithms in PETSc.
31: Collective
33: Input Parameter:
34: . comm - The communicator for the `DM` object
36: Output Parameter:
37: . dm - The `DM` object
39: Level: beginner
41: Notes:
42: See `DMType` for a brief summary of available `DM`.
44: The type must then be set with `DMSetType()`. If you never call `DMSetType()` it will generate an
45: error when you try to use the `dm`.
47: `DM` is an orphan initialism or orphan acronym, the letters have no meaning and never did.
49: .seealso: [](ch_dmbase), `DM`, `DMSetType()`, `DMType`, `DMDACreate()`, `DMDA`, `DMSLICED`, `DMCOMPOSITE`, `DMPLEX`, `DMMOAB`, `DMNETWORK`
50: @*/
51: PetscErrorCode DMCreate(MPI_Comm comm, DM *dm)
52: {
53: DM v;
54: PetscDS ds;
56: PetscFunctionBegin;
57: PetscAssertPointer(dm, 2);
59: PetscCall(DMInitializePackage());
60: PetscCall(PetscHeaderCreate(v, DM_CLASSID, "DM", "Distribution Manager", "DM", comm, DMDestroy, DMView));
61: ((PetscObject)v)->non_cyclic_references = &DMCountNonCyclicReferences;
62: v->setupcalled = PETSC_FALSE;
63: v->setfromoptionscalled = PETSC_FALSE;
64: v->ltogmap = NULL;
65: v->bind_below = 0;
66: v->bs = 1;
67: v->coloringtype = IS_COLORING_GLOBAL;
68: PetscCall(PetscSFCreate(comm, &v->sf));
69: PetscCall(PetscSFCreate(comm, &v->sectionSF));
70: v->labels = NULL;
71: v->adjacency[0] = PETSC_FALSE;
72: v->adjacency[1] = PETSC_TRUE;
73: v->depthLabel = NULL;
74: v->celltypeLabel = NULL;
75: v->localSection = NULL;
76: v->globalSection = NULL;
77: v->defaultConstraint.section = NULL;
78: v->defaultConstraint.mat = NULL;
79: v->defaultConstraint.bias = NULL;
80: v->coordinates[0].dim = PETSC_DEFAULT;
81: v->coordinates[1].dim = PETSC_DEFAULT;
82: v->sparseLocalize = PETSC_TRUE;
83: v->dim = PETSC_DETERMINE;
84: {
85: PetscInt i;
86: for (i = 0; i < 10; ++i) {
87: v->nullspaceConstructors[i] = NULL;
88: v->nearnullspaceConstructors[i] = NULL;
89: }
90: }
91: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &ds));
92: PetscCall(DMSetRegionDS(v, NULL, NULL, ds, NULL));
93: PetscCall(PetscDSDestroy(&ds));
94: PetscCall(PetscHMapAuxCreate(&v->auxData));
95: v->dmBC = NULL;
96: v->coarseMesh = NULL;
97: v->outputSequenceNum = -1;
98: v->outputSequenceVal = 0.0;
99: PetscCall(DMSetVecType(v, VECSTANDARD));
100: PetscCall(DMSetMatType(v, MATAIJ));
102: *dm = v;
103: PetscFunctionReturn(PETSC_SUCCESS);
104: }
106: /*@
107: DMClone - Creates a `DM` object with the same topology as the original.
109: Collective
111: Input Parameter:
112: . dm - The original `DM` object
114: Output Parameter:
115: . newdm - The new `DM` object
117: Level: beginner
119: Notes:
120: For some `DM` implementations this is a shallow clone, the result of which may share (reference counted) information with its parent. For example,
121: `DMClone()` applied to a `DMPLEX` object will result in a new `DMPLEX` that shares the topology with the original `DMPLEX`. It does not
122: share the `PetscSection` of the original `DM`.
124: The clone is considered set up if the original has been set up.
126: Use `DMConvert()` for a general way to create new `DM` from a given `DM`
128: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMCreate()`, `DMSetType()`, `DMSetLocalSection()`, `DMSetGlobalSection()`, `DMPLEX`, `DMConvert()`
129: @*/
130: PetscErrorCode DMClone(DM dm, DM *newdm)
131: {
132: PetscSF sf;
133: Vec coords;
134: void *ctx;
135: MatOrderingType otype;
136: DMReorderDefaultFlag flg;
137: PetscInt dim, cdim, i;
139: PetscFunctionBegin;
141: PetscAssertPointer(newdm, 2);
142: PetscCall(DMCreate(PetscObjectComm((PetscObject)dm), newdm));
143: PetscCall(DMCopyLabels(dm, *newdm, PETSC_COPY_VALUES, PETSC_TRUE, DM_COPY_LABELS_FAIL));
144: (*newdm)->leveldown = dm->leveldown;
145: (*newdm)->levelup = dm->levelup;
146: (*newdm)->prealloc_only = dm->prealloc_only;
147: (*newdm)->prealloc_skip = dm->prealloc_skip;
148: PetscCall(PetscFree((*newdm)->vectype));
149: PetscCall(PetscStrallocpy(dm->vectype, (char **)&(*newdm)->vectype));
150: PetscCall(PetscFree((*newdm)->mattype));
151: PetscCall(PetscStrallocpy(dm->mattype, (char **)&(*newdm)->mattype));
152: PetscCall(DMGetDimension(dm, &dim));
153: PetscCall(DMSetDimension(*newdm, dim));
154: PetscTryTypeMethod(dm, clone, newdm);
155: (*newdm)->setupcalled = dm->setupcalled;
156: PetscCall(DMGetPointSF(dm, &sf));
157: PetscCall(DMSetPointSF(*newdm, sf));
158: PetscCall(DMGetApplicationContext(dm, &ctx));
159: PetscCall(DMSetApplicationContext(*newdm, ctx));
160: PetscCall(DMReorderSectionGetDefault(dm, &flg));
161: PetscCall(DMReorderSectionSetDefault(*newdm, flg));
162: PetscCall(DMReorderSectionGetType(dm, &otype));
163: PetscCall(DMReorderSectionSetType(*newdm, otype));
164: for (i = 0; i < 2; ++i) {
165: if (dm->coordinates[i].dm) {
166: DM ncdm;
167: PetscSection cs;
168: PetscInt pEnd = -1, pEndMax = -1;
170: PetscCall(DMGetLocalSection(dm->coordinates[i].dm, &cs));
171: if (cs) PetscCall(PetscSectionGetChart(cs, NULL, &pEnd));
172: PetscCallMPI(MPIU_Allreduce(&pEnd, &pEndMax, 1, MPIU_INT, MPI_MAX, PetscObjectComm((PetscObject)dm)));
173: if (pEndMax >= 0) {
174: PetscCall(DMClone(dm->coordinates[i].dm, &ncdm));
175: PetscCall(DMCopyDisc(dm->coordinates[i].dm, ncdm));
176: PetscCall(DMSetLocalSection(ncdm, cs));
177: if (dm->coordinates[i].dm->periodic.setup) {
178: ncdm->periodic.setup = dm->coordinates[i].dm->periodic.setup;
179: PetscCall(ncdm->periodic.setup(ncdm));
180: }
181: if (i) PetscCall(DMSetCellCoordinateDM(*newdm, ncdm));
182: else PetscCall(DMSetCoordinateDM(*newdm, ncdm));
183: PetscCall(DMDestroy(&ncdm));
184: }
185: }
186: }
187: PetscCall(DMGetCoordinateDim(dm, &cdim));
188: PetscCall(DMSetCoordinateDim(*newdm, cdim));
189: PetscCall(DMGetCoordinatesLocal(dm, &coords));
190: if (coords) {
191: PetscCall(DMSetCoordinatesLocal(*newdm, coords));
192: } else {
193: PetscCall(DMGetCoordinates(dm, &coords));
194: if (coords) PetscCall(DMSetCoordinates(*newdm, coords));
195: }
196: PetscCall(DMGetCellCoordinatesLocal(dm, &coords));
197: if (coords) {
198: PetscCall(DMSetCellCoordinatesLocal(*newdm, coords));
199: } else {
200: PetscCall(DMGetCellCoordinates(dm, &coords));
201: if (coords) PetscCall(DMSetCellCoordinates(*newdm, coords));
202: }
203: {
204: const PetscReal *maxCell, *Lstart, *L;
206: PetscCall(DMGetPeriodicity(dm, &maxCell, &Lstart, &L));
207: PetscCall(DMSetPeriodicity(*newdm, maxCell, Lstart, L));
208: }
209: {
210: PetscBool useCone, useClosure;
212: PetscCall(DMGetAdjacency(dm, PETSC_DEFAULT, &useCone, &useClosure));
213: PetscCall(DMSetAdjacency(*newdm, PETSC_DEFAULT, useCone, useClosure));
214: }
215: PetscFunctionReturn(PETSC_SUCCESS);
216: }
218: /*@
219: DMSetVecType - Sets the type of vector to be created with `DMCreateLocalVector()` and `DMCreateGlobalVector()`
221: Logically Collective
223: Input Parameters:
224: + dm - initial distributed array
225: - ctype - the vector type, for example `VECSTANDARD`, `VECCUDA`, or `VECVIENNACL`
227: Options Database Key:
228: . -dm_vec_type ctype - the type of vector to create
230: Level: intermediate
232: .seealso: [](ch_dmbase), `DM`, `DMCreate()`, `DMDestroy()`, `DMDAInterpolationType`, `VecType`, `DMGetVecType()`, `DMSetMatType()`, `DMGetMatType()`,
233: `VECSTANDARD`, `VECCUDA`, `VECVIENNACL`, `DMCreateLocalVector()`, `DMCreateGlobalVector()`
234: @*/
235: PetscErrorCode DMSetVecType(DM dm, VecType ctype)
236: {
237: char *tmp;
239: PetscFunctionBegin;
241: PetscAssertPointer(ctype, 2);
242: tmp = (char *)dm->vectype;
243: PetscCall(PetscStrallocpy(ctype, (char **)&dm->vectype));
244: PetscCall(PetscFree(tmp));
245: PetscFunctionReturn(PETSC_SUCCESS);
246: }
248: /*@
249: DMGetVecType - Gets the type of vector created with `DMCreateLocalVector()` and `DMCreateGlobalVector()`
251: Logically Collective
253: Input Parameter:
254: . da - initial distributed array
256: Output Parameter:
257: . ctype - the vector type
259: Level: intermediate
261: .seealso: [](ch_dmbase), `DM`, `DMCreate()`, `DMDestroy()`, `DMDAInterpolationType`, `VecType`, `DMSetMatType()`, `DMGetMatType()`, `DMSetVecType()`
262: @*/
263: PetscErrorCode DMGetVecType(DM da, VecType *ctype)
264: {
265: PetscFunctionBegin;
267: *ctype = da->vectype;
268: PetscFunctionReturn(PETSC_SUCCESS);
269: }
271: /*@
272: VecGetDM - Gets the `DM` defining the data layout of the vector
274: Not Collective
276: Input Parameter:
277: . v - The `Vec`
279: Output Parameter:
280: . dm - The `DM`
282: Level: intermediate
284: Note:
285: A `Vec` may not have a `DM` associated with it.
287: .seealso: [](ch_dmbase), `DM`, `VecSetDM()`, `DMGetLocalVector()`, `DMGetGlobalVector()`, `DMSetVecType()`
288: @*/
289: PetscErrorCode VecGetDM(Vec v, DM *dm)
290: {
291: PetscFunctionBegin;
293: PetscAssertPointer(dm, 2);
294: PetscCall(PetscObjectQuery((PetscObject)v, "__PETSc_dm", (PetscObject *)dm));
295: PetscFunctionReturn(PETSC_SUCCESS);
296: }
298: /*@
299: VecSetDM - Sets the `DM` defining the data layout of the vector.
301: Not Collective
303: Input Parameters:
304: + v - The `Vec`
305: - dm - The `DM`
307: Level: developer
309: Notes:
310: This is rarely used, generally one uses `DMGetLocalVector()` or `DMGetGlobalVector()` to create a vector associated with a given `DM`
312: This is NOT the same as `DMCreateGlobalVector()` since it does not change the view methods or perform other customization, but merely sets the `DM` member.
314: .seealso: [](ch_dmbase), `DM`, `VecGetDM()`, `DMGetLocalVector()`, `DMGetGlobalVector()`, `DMSetVecType()`
315: @*/
316: PetscErrorCode VecSetDM(Vec v, DM dm)
317: {
318: PetscFunctionBegin;
321: PetscCall(PetscObjectCompose((PetscObject)v, "__PETSc_dm", (PetscObject)dm));
322: PetscFunctionReturn(PETSC_SUCCESS);
323: }
325: /*@
326: DMSetISColoringType - Sets the type of coloring, `IS_COLORING_GLOBAL` or `IS_COLORING_LOCAL` that is created by the `DM`
328: Logically Collective
330: Input Parameters:
331: + dm - the `DM` context
332: - ctype - the matrix type
334: Options Database Key:
335: . -dm_is_coloring_type - global or local
337: Level: intermediate
339: .seealso: [](ch_dmbase), `DM`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixPreallocateOnly()`, `MatType`, `DMGetMatType()`,
340: `DMGetISColoringType()`, `ISColoringType`, `IS_COLORING_GLOBAL`, `IS_COLORING_LOCAL`
341: @*/
342: PetscErrorCode DMSetISColoringType(DM dm, ISColoringType ctype)
343: {
344: PetscFunctionBegin;
346: dm->coloringtype = ctype;
347: PetscFunctionReturn(PETSC_SUCCESS);
348: }
350: /*@
351: DMGetISColoringType - Gets the type of coloring, `IS_COLORING_GLOBAL` or `IS_COLORING_LOCAL` that is created by the `DM`
353: Logically Collective
355: Input Parameter:
356: . dm - the `DM` context
358: Output Parameter:
359: . ctype - the matrix type
361: Options Database Key:
362: . -dm_is_coloring_type - global or local
364: Level: intermediate
366: .seealso: [](ch_dmbase), `DM`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixPreallocateOnly()`, `MatType`, `DMGetMatType()`,
367: `ISColoringType`, `IS_COLORING_GLOBAL`, `IS_COLORING_LOCAL`
368: @*/
369: PetscErrorCode DMGetISColoringType(DM dm, ISColoringType *ctype)
370: {
371: PetscFunctionBegin;
373: *ctype = dm->coloringtype;
374: PetscFunctionReturn(PETSC_SUCCESS);
375: }
377: /*@
378: DMSetMatType - Sets the type of matrix created with `DMCreateMatrix()`
380: Logically Collective
382: Input Parameters:
383: + dm - the `DM` context
384: - ctype - the matrix type, for example `MATMPIAIJ`
386: Options Database Key:
387: . -dm_mat_type ctype - the type of the matrix to create, for example mpiaij
389: Level: intermediate
391: .seealso: [](ch_dmbase), `DM`, `MatType`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixPreallocateOnly()`, `DMGetMatType()`, `DMCreateGlobalVector()`, `DMCreateLocalVector()`
392: @*/
393: PetscErrorCode DMSetMatType(DM dm, MatType ctype)
394: {
395: char *tmp;
397: PetscFunctionBegin;
399: PetscAssertPointer(ctype, 2);
400: tmp = (char *)dm->mattype;
401: PetscCall(PetscStrallocpy(ctype, (char **)&dm->mattype));
402: PetscCall(PetscFree(tmp));
403: PetscFunctionReturn(PETSC_SUCCESS);
404: }
406: /*@
407: DMGetMatType - Gets the type of matrix that would be created with `DMCreateMatrix()`
409: Logically Collective
411: Input Parameter:
412: . dm - the `DM` context
414: Output Parameter:
415: . ctype - the matrix type
417: Level: intermediate
419: .seealso: [](ch_dmbase), `DM`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixPreallocateOnly()`, `MatType`, `DMSetMatType()`
420: @*/
421: PetscErrorCode DMGetMatType(DM dm, MatType *ctype)
422: {
423: PetscFunctionBegin;
425: *ctype = dm->mattype;
426: PetscFunctionReturn(PETSC_SUCCESS);
427: }
429: /*@
430: MatGetDM - Gets the `DM` defining the data layout of the matrix
432: Not Collective
434: Input Parameter:
435: . A - The `Mat`
437: Output Parameter:
438: . dm - The `DM`
440: Level: intermediate
442: Note:
443: A matrix may not have a `DM` associated with it
445: Developer Note:
446: Since the `Mat` class doesn't know about the `DM` class the `DM` object is associated with the `Mat` through a `PetscObjectCompose()` operation
448: .seealso: [](ch_dmbase), `DM`, `MatSetDM()`, `DMCreateMatrix()`, `DMSetMatType()`
449: @*/
450: PetscErrorCode MatGetDM(Mat A, DM *dm)
451: {
452: PetscFunctionBegin;
454: PetscAssertPointer(dm, 2);
455: PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_dm", (PetscObject *)dm));
456: PetscFunctionReturn(PETSC_SUCCESS);
457: }
459: /*@
460: MatSetDM - Sets the `DM` defining the data layout of the matrix
462: Not Collective
464: Input Parameters:
465: + A - The `Mat`
466: - dm - The `DM`
468: Level: developer
470: Note:
471: This is rarely used in practice, rather `DMCreateMatrix()` is used to create a matrix associated with a particular `DM`
473: Developer Note:
474: Since the `Mat` class doesn't know about the `DM` class the `DM` object is associated with
475: the `Mat` through a `PetscObjectCompose()` operation
477: .seealso: [](ch_dmbase), `DM`, `MatGetDM()`, `DMCreateMatrix()`, `DMSetMatType()`
478: @*/
479: PetscErrorCode MatSetDM(Mat A, DM dm)
480: {
481: PetscFunctionBegin;
484: PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_dm", (PetscObject)dm));
485: PetscFunctionReturn(PETSC_SUCCESS);
486: }
488: /*@
489: DMSetOptionsPrefix - Sets the prefix prepended to all option names when searching through the options database
491: Logically Collective
493: Input Parameters:
494: + dm - the `DM` context
495: - prefix - the prefix to prepend
497: Level: advanced
499: Note:
500: A hyphen (-) must NOT be given at the beginning of the prefix name.
501: The first character of all runtime options is AUTOMATICALLY the hyphen.
503: .seealso: [](ch_dmbase), `DM`, `PetscObjectSetOptionsPrefix()`, `DMSetFromOptions()`
504: @*/
505: PetscErrorCode DMSetOptionsPrefix(DM dm, const char prefix[])
506: {
507: PetscFunctionBegin;
509: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)dm, prefix));
510: if (dm->sf) PetscCall(PetscObjectSetOptionsPrefix((PetscObject)dm->sf, prefix));
511: if (dm->sectionSF) PetscCall(PetscObjectSetOptionsPrefix((PetscObject)dm->sectionSF, prefix));
512: PetscFunctionReturn(PETSC_SUCCESS);
513: }
515: /*@
516: DMAppendOptionsPrefix - Appends an additional string to an already existing prefix used for searching for
517: `DM` options in the options database.
519: Logically Collective
521: Input Parameters:
522: + dm - the `DM` context
523: - prefix - the string to append to the current prefix
525: Level: advanced
527: Note:
528: If the `DM` does not currently have an options prefix then this value is used alone as the prefix as if `DMSetOptionsPrefix()` had been called.
529: A hyphen (-) must NOT be given at the beginning of the prefix name.
530: The first character of all runtime options is AUTOMATICALLY the hyphen.
532: .seealso: [](ch_dmbase), `DM`, `DMSetOptionsPrefix()`, `DMGetOptionsPrefix()`, `PetscObjectAppendOptionsPrefix()`, `DMSetFromOptions()`
533: @*/
534: PetscErrorCode DMAppendOptionsPrefix(DM dm, const char prefix[])
535: {
536: PetscFunctionBegin;
538: PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)dm, prefix));
539: PetscFunctionReturn(PETSC_SUCCESS);
540: }
542: /*@
543: DMGetOptionsPrefix - Gets the prefix used for searching for all
544: DM options in the options database.
546: Not Collective
548: Input Parameter:
549: . dm - the `DM` context
551: Output Parameter:
552: . prefix - pointer to the prefix string used is returned
554: Level: advanced
556: Fortran Note:
557: Pass in a string 'prefix' of
558: sufficient length to hold the prefix.
560: .seealso: [](ch_dmbase), `DM`, `DMSetOptionsPrefix()`, `DMAppendOptionsPrefix()`, `DMSetFromOptions()`
561: @*/
562: PetscErrorCode DMGetOptionsPrefix(DM dm, const char *prefix[])
563: {
564: PetscFunctionBegin;
566: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)dm, prefix));
567: PetscFunctionReturn(PETSC_SUCCESS);
568: }
570: static PetscErrorCode DMCountNonCyclicReferences_Internal(DM dm, PetscBool recurseCoarse, PetscBool recurseFine, PetscInt *ncrefct)
571: {
572: PetscInt refct = ((PetscObject)dm)->refct;
574: PetscFunctionBegin;
575: *ncrefct = 0;
576: if (dm->coarseMesh && dm->coarseMesh->fineMesh == dm) {
577: refct--;
578: if (recurseCoarse) {
579: PetscInt coarseCount;
581: PetscCall(DMCountNonCyclicReferences_Internal(dm->coarseMesh, PETSC_TRUE, PETSC_FALSE, &coarseCount));
582: refct += coarseCount;
583: }
584: }
585: if (dm->fineMesh && dm->fineMesh->coarseMesh == dm) {
586: refct--;
587: if (recurseFine) {
588: PetscInt fineCount;
590: PetscCall(DMCountNonCyclicReferences_Internal(dm->fineMesh, PETSC_FALSE, PETSC_TRUE, &fineCount));
591: refct += fineCount;
592: }
593: }
594: *ncrefct = refct;
595: PetscFunctionReturn(PETSC_SUCCESS);
596: }
598: /* Generic wrapper for DMCountNonCyclicReferences_Internal() */
599: PetscErrorCode DMCountNonCyclicReferences(PetscObject dm, PetscInt *ncrefct)
600: {
601: PetscFunctionBegin;
602: PetscCall(DMCountNonCyclicReferences_Internal((DM)dm, PETSC_TRUE, PETSC_TRUE, ncrefct));
603: PetscFunctionReturn(PETSC_SUCCESS);
604: }
606: PetscErrorCode DMDestroyLabelLinkList_Internal(DM dm)
607: {
608: DMLabelLink next = dm->labels;
610: PetscFunctionBegin;
611: /* destroy the labels */
612: while (next) {
613: DMLabelLink tmp = next->next;
615: if (next->label == dm->depthLabel) dm->depthLabel = NULL;
616: if (next->label == dm->celltypeLabel) dm->celltypeLabel = NULL;
617: PetscCall(DMLabelDestroy(&next->label));
618: PetscCall(PetscFree(next));
619: next = tmp;
620: }
621: dm->labels = NULL;
622: PetscFunctionReturn(PETSC_SUCCESS);
623: }
625: static PetscErrorCode DMDestroyCoordinates_Private(DMCoordinates *c)
626: {
627: PetscFunctionBegin;
628: c->dim = PETSC_DEFAULT;
629: PetscCall(DMDestroy(&c->dm));
630: PetscCall(VecDestroy(&c->x));
631: PetscCall(VecDestroy(&c->xl));
632: PetscCall(DMFieldDestroy(&c->field));
633: PetscFunctionReturn(PETSC_SUCCESS);
634: }
636: /*@
637: DMDestroy - Destroys a `DM`.
639: Collective
641: Input Parameter:
642: . dm - the `DM` object to destroy
644: Level: developer
646: .seealso: [](ch_dmbase), `DM`, `DMCreate()`, `DMType`, `DMSetType()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`
647: @*/
648: PetscErrorCode DMDestroy(DM *dm)
649: {
650: PetscInt cnt;
652: PetscFunctionBegin;
653: if (!*dm) PetscFunctionReturn(PETSC_SUCCESS);
656: /* count all non-cyclic references in the doubly-linked list of coarse<->fine meshes */
657: PetscCall(DMCountNonCyclicReferences_Internal(*dm, PETSC_TRUE, PETSC_TRUE, &cnt));
658: --((PetscObject)*dm)->refct;
659: if (--cnt > 0) {
660: *dm = NULL;
661: PetscFunctionReturn(PETSC_SUCCESS);
662: }
663: if (((PetscObject)*dm)->refct < 0) PetscFunctionReturn(PETSC_SUCCESS);
664: ((PetscObject)*dm)->refct = 0;
666: PetscCall(DMClearGlobalVectors(*dm));
667: PetscCall(DMClearLocalVectors(*dm));
668: PetscCall(DMClearNamedGlobalVectors(*dm));
669: PetscCall(DMClearNamedLocalVectors(*dm));
671: /* Destroy the list of hooks */
672: {
673: DMCoarsenHookLink link, next;
674: for (link = (*dm)->coarsenhook; link; link = next) {
675: next = link->next;
676: PetscCall(PetscFree(link));
677: }
678: (*dm)->coarsenhook = NULL;
679: }
680: {
681: DMRefineHookLink link, next;
682: for (link = (*dm)->refinehook; link; link = next) {
683: next = link->next;
684: PetscCall(PetscFree(link));
685: }
686: (*dm)->refinehook = NULL;
687: }
688: {
689: DMSubDomainHookLink link, next;
690: for (link = (*dm)->subdomainhook; link; link = next) {
691: next = link->next;
692: PetscCall(PetscFree(link));
693: }
694: (*dm)->subdomainhook = NULL;
695: }
696: {
697: DMGlobalToLocalHookLink link, next;
698: for (link = (*dm)->gtolhook; link; link = next) {
699: next = link->next;
700: PetscCall(PetscFree(link));
701: }
702: (*dm)->gtolhook = NULL;
703: }
704: {
705: DMLocalToGlobalHookLink link, next;
706: for (link = (*dm)->ltoghook; link; link = next) {
707: next = link->next;
708: PetscCall(PetscFree(link));
709: }
710: (*dm)->ltoghook = NULL;
711: }
712: /* Destroy the work arrays */
713: {
714: DMWorkLink link, next;
715: PetscCheck(!(*dm)->workout, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Work array still checked out %p %p", (void *)(*dm)->workout, (*dm)->workout->mem);
716: for (link = (*dm)->workin; link; link = next) {
717: next = link->next;
718: PetscCall(PetscFree(link->mem));
719: PetscCall(PetscFree(link));
720: }
721: (*dm)->workin = NULL;
722: }
723: /* destroy the labels */
724: PetscCall(DMDestroyLabelLinkList_Internal(*dm));
725: /* destroy the fields */
726: PetscCall(DMClearFields(*dm));
727: /* destroy the boundaries */
728: {
729: DMBoundary next = (*dm)->boundary;
730: while (next) {
731: DMBoundary b = next;
733: next = b->next;
734: PetscCall(PetscFree(b));
735: }
736: }
738: PetscCall(PetscObjectDestroy(&(*dm)->dmksp));
739: PetscCall(PetscObjectDestroy(&(*dm)->dmsnes));
740: PetscCall(PetscObjectDestroy(&(*dm)->dmts));
742: if ((*dm)->ctx && (*dm)->ctxdestroy) PetscCall((*(*dm)->ctxdestroy)(&(*dm)->ctx));
743: PetscCall(MatFDColoringDestroy(&(*dm)->fd));
744: PetscCall(ISLocalToGlobalMappingDestroy(&(*dm)->ltogmap));
745: PetscCall(PetscFree((*dm)->vectype));
746: PetscCall(PetscFree((*dm)->mattype));
748: PetscCall(PetscSectionDestroy(&(*dm)->localSection));
749: PetscCall(PetscSectionDestroy(&(*dm)->globalSection));
750: PetscCall(PetscFree((*dm)->reorderSectionType));
751: PetscCall(PetscLayoutDestroy(&(*dm)->map));
752: PetscCall(PetscSectionDestroy(&(*dm)->defaultConstraint.section));
753: PetscCall(MatDestroy(&(*dm)->defaultConstraint.mat));
754: PetscCall(PetscSFDestroy(&(*dm)->sf));
755: PetscCall(PetscSFDestroy(&(*dm)->sectionSF));
756: if ((*dm)->sfNatural) PetscCall(PetscSFDestroy(&(*dm)->sfNatural));
757: PetscCall(PetscObjectDereference((PetscObject)(*dm)->sfMigration));
758: PetscCall(DMClearAuxiliaryVec(*dm));
759: PetscCall(PetscHMapAuxDestroy(&(*dm)->auxData));
760: if ((*dm)->coarseMesh && (*dm)->coarseMesh->fineMesh == *dm) PetscCall(DMSetFineDM((*dm)->coarseMesh, NULL));
762: PetscCall(DMDestroy(&(*dm)->coarseMesh));
763: if ((*dm)->fineMesh && (*dm)->fineMesh->coarseMesh == *dm) PetscCall(DMSetCoarseDM((*dm)->fineMesh, NULL));
764: PetscCall(DMDestroy(&(*dm)->fineMesh));
765: PetscCall(PetscFree((*dm)->Lstart));
766: PetscCall(PetscFree((*dm)->L));
767: PetscCall(PetscFree((*dm)->maxCell));
768: PetscCall(DMDestroyCoordinates_Private(&(*dm)->coordinates[0]));
769: PetscCall(DMDestroyCoordinates_Private(&(*dm)->coordinates[1]));
770: if ((*dm)->transformDestroy) PetscCall((*(*dm)->transformDestroy)(*dm, (*dm)->transformCtx));
771: PetscCall(DMDestroy(&(*dm)->transformDM));
772: PetscCall(VecDestroy(&(*dm)->transform));
773: for (PetscInt i = 0; i < (*dm)->periodic.num_affines; i++) {
774: PetscCall(VecScatterDestroy(&(*dm)->periodic.affine_to_local[i]));
775: PetscCall(VecDestroy(&(*dm)->periodic.affine[i]));
776: }
777: if ((*dm)->periodic.num_affines > 0) PetscCall(PetscFree2((*dm)->periodic.affine_to_local, (*dm)->periodic.affine));
779: PetscCall(DMClearDS(*dm));
780: PetscCall(DMDestroy(&(*dm)->dmBC));
781: /* if memory was published with SAWs then destroy it */
782: PetscCall(PetscObjectSAWsViewOff((PetscObject)*dm));
784: PetscTryTypeMethod(*dm, destroy);
785: PetscCall(DMMonitorCancel(*dm));
786: PetscCall(DMCeedDestroy(&(*dm)->dmceed));
787: #ifdef PETSC_HAVE_LIBCEED
788: PetscCallCEED(CeedElemRestrictionDestroy(&(*dm)->ceedERestrict));
789: PetscCallCEED(CeedDestroy(&(*dm)->ceed));
790: #endif
791: /* We do not destroy (*dm)->data here so that we can reference count backend objects */
792: PetscCall(PetscHeaderDestroy(dm));
793: PetscFunctionReturn(PETSC_SUCCESS);
794: }
796: /*@
797: DMSetUp - sets up the data structures inside a `DM` object
799: Collective
801: Input Parameter:
802: . dm - the `DM` object to setup
804: Level: intermediate
806: Note:
807: This is usually called after various parameter setting operations and `DMSetFromOptions()` are called on the `DM`
809: .seealso: [](ch_dmbase), `DM`, `DMCreate()`, `DMSetType()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`
810: @*/
811: PetscErrorCode DMSetUp(DM dm)
812: {
813: PetscFunctionBegin;
815: if (dm->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
816: PetscTryTypeMethod(dm, setup);
817: dm->setupcalled = PETSC_TRUE;
818: PetscFunctionReturn(PETSC_SUCCESS);
819: }
821: /*@
822: DMSetFromOptions - sets parameters in a `DM` from the options database
824: Collective
826: Input Parameter:
827: . dm - the `DM` object to set options for
829: Options Database Keys:
830: + -dm_preallocate_only - Only preallocate the matrix for `DMCreateMatrix()` and `DMCreateMassMatrix()`, but do not fill it with zeros
831: . -dm_vec_type <type> - type of vector to create inside `DM`
832: . -dm_mat_type <type> - type of matrix to create inside `DM`
833: . -dm_is_coloring_type - <global or local>
834: . -dm_bind_below <n> - bind (force execution on CPU) for `Vec` and `Mat` objects with local size (number of vector entries or matrix rows) below n; currently only supported for `DMDA`
835: . -dm_plex_option_phases <ph0_, ph1_, ...> - List of prefixes for option processing phases
836: . -dm_plex_filename <str> - File containing a mesh
837: . -dm_plex_boundary_filename <str> - File containing a mesh boundary
838: . -dm_plex_name <str> - Name of the mesh in the file
839: . -dm_plex_shape <shape> - The domain shape, such as `BOX`, `SPHERE`, etc.
840: . -dm_plex_cell <ct> - Cell shape
841: . -dm_plex_reference_cell_domain <bool> - Use a reference cell domain
842: . -dm_plex_dim <dim> - Set the topological dimension
843: . -dm_plex_simplex <bool> - `PETSC_TRUE` for simplex elements, `PETSC_FALSE` for tensor elements
844: . -dm_plex_interpolate <bool> - `PETSC_TRUE` turns on topological interpolation (creating edges and faces)
845: . -dm_plex_orient <bool> - `PETSC_TRUE` turns on topological orientation (flipping edges and faces)
846: . -dm_plex_scale <sc> - Scale factor for mesh coordinates
847: . -dm_coord_remap <bool> - Map coordinates using a function
848: . -dm_plex_coordinate_dim <dim> - Change the coordinate dimension of a mesh (usually given with cdm_ prefix)
849: . -dm_coord_map <mapname> - Select a builtin coordinate map
850: . -dm_coord_map_params <p0,p1,p2,...> - Set coordinate mapping parameters
851: . -dm_plex_box_faces <m,n,p> - Number of faces along each dimension
852: . -dm_plex_box_lower <x,y,z> - Specify lower-left-bottom coordinates for the box
853: . -dm_plex_box_upper <x,y,z> - Specify upper-right-top coordinates for the box
854: . -dm_plex_box_bd <bx,by,bz> - Specify the `DMBoundaryType` for each direction
855: . -dm_plex_sphere_radius <r> - The sphere radius
856: . -dm_plex_ball_radius <r> - Radius of the ball
857: . -dm_plex_cylinder_bd <bz> - Boundary type in the z direction
858: . -dm_plex_cylinder_num_wedges <n> - Number of wedges around the cylinder
859: . -dm_plex_reorder <order> - Reorder the mesh using the specified algorithm
860: . -dm_refine_pre <n> - The number of refinements before distribution
861: . -dm_refine_uniform_pre <bool> - Flag for uniform refinement before distribution
862: . -dm_refine_volume_limit_pre <v> - The maximum cell volume after refinement before distribution
863: . -dm_refine <n> - The number of refinements after distribution
864: . -dm_extrude <l> - Activate extrusion and specify the number of layers to extrude
865: . -dm_plex_transform_extrude_thickness <t> - The total thickness of extruded layers
866: . -dm_plex_transform_extrude_use_tensor <bool> - Use tensor cells when extruding
867: . -dm_plex_transform_extrude_symmetric <bool> - Extrude layers symmetrically about the surface
868: . -dm_plex_transform_extrude_normal <n0,...,nd> - Specify the extrusion direction
869: . -dm_plex_transform_extrude_thicknesses <t0,...,tl> - Specify thickness of each layer
870: . -dm_plex_create_fv_ghost_cells - Flag to create finite volume ghost cells on the boundary
871: . -dm_plex_fv_ghost_cells_label <name> - Label name for ghost cells boundary
872: . -dm_distribute <bool> - Flag to redistribute a mesh among processes
873: . -dm_distribute_overlap <n> - The size of the overlap halo
874: . -dm_plex_adj_cone <bool> - Set adjacency direction
875: . -dm_plex_adj_closure <bool> - Set adjacency size
876: . -dm_plex_use_ceed <bool> - Use LibCEED as the FEM backend
877: . -dm_plex_check_symmetry - Check that the adjacency information in the mesh is symmetric - `DMPlexCheckSymmetry()`
878: . -dm_plex_check_skeleton - Check that each cell has the correct number of vertices (only for homogeneous simplex or tensor meshes) - `DMPlexCheckSkeleton()`
879: . -dm_plex_check_faces - Check that the faces of each cell give a vertex order this is consistent with what we expect from the cell type - `DMPlexCheckFaces()`
880: . -dm_plex_check_geometry - Check that cells have positive volume - `DMPlexCheckGeometry()`
881: . -dm_plex_check_pointsf - Check some necessary conditions for `PointSF` - `DMPlexCheckPointSF()`
882: . -dm_plex_check_interface_cones - Check points on inter-partition interfaces have conforming order of cone points - `DMPlexCheckInterfaceCones()`
883: - -dm_plex_check_all - Perform all the checks above
885: Level: intermediate
887: Note:
888: For some `DMType` such as `DMDA` this cannot be called after `DMSetUp()` has been called.
890: .seealso: [](ch_dmbase), `DM`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`,
891: `DMPlexCheckSymmetry()`, `DMPlexCheckSkeleton()`, `DMPlexCheckFaces()`, `DMPlexCheckGeometry()`, `DMPlexCheckPointSF()`, `DMPlexCheckInterfaceCones()`,
892: `DMSetOptionsPrefix()`, `DMType`, `DMPLEX`, `DMDA`, `DMSetUp()`
893: @*/
894: PetscErrorCode DMSetFromOptions(DM dm)
895: {
896: char typeName[256];
897: PetscBool flg;
899: PetscFunctionBegin;
901: dm->setfromoptionscalled = PETSC_TRUE;
902: if (dm->sf) PetscCall(PetscSFSetFromOptions(dm->sf));
903: if (dm->sectionSF) PetscCall(PetscSFSetFromOptions(dm->sectionSF));
904: if (dm->coordinates[0].dm) PetscCall(DMSetFromOptions(dm->coordinates[0].dm));
905: PetscObjectOptionsBegin((PetscObject)dm);
906: PetscCall(PetscOptionsBool("-dm_preallocate_only", "only preallocate matrix, but do not set column indices", "DMSetMatrixPreallocateOnly", dm->prealloc_only, &dm->prealloc_only, NULL));
907: PetscCall(PetscOptionsFList("-dm_vec_type", "Vector type used for created vectors", "DMSetVecType", VecList, dm->vectype, typeName, 256, &flg));
908: if (flg) PetscCall(DMSetVecType(dm, typeName));
909: PetscCall(PetscOptionsFList("-dm_mat_type", "Matrix type used for created matrices", "DMSetMatType", MatList, dm->mattype ? dm->mattype : typeName, typeName, sizeof(typeName), &flg));
910: if (flg) PetscCall(DMSetMatType(dm, typeName));
911: PetscCall(PetscOptionsEnum("-dm_blocking_type", "Topological point or field node blocking", "DMSetBlockingType", DMBlockingTypes, (PetscEnum)dm->blocking_type, (PetscEnum *)&dm->blocking_type, NULL));
912: PetscCall(PetscOptionsEnum("-dm_is_coloring_type", "Global or local coloring of Jacobian", "DMSetISColoringType", ISColoringTypes, (PetscEnum)dm->coloringtype, (PetscEnum *)&dm->coloringtype, NULL));
913: PetscCall(PetscOptionsInt("-dm_bind_below", "Set the size threshold (in entries) below which the Vec is bound to the CPU", "VecBindToCPU", dm->bind_below, &dm->bind_below, &flg));
914: PetscCall(PetscOptionsBool("-dm_ignore_perm_output", "Ignore the local section permutation on output", "DMGetOutputDM", dm->ignorePermOutput, &dm->ignorePermOutput, NULL));
915: PetscTryTypeMethod(dm, setfromoptions, PetscOptionsObject);
916: /* process any options handlers added with PetscObjectAddOptionsHandler() */
917: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)dm, PetscOptionsObject));
918: PetscOptionsEnd();
919: PetscFunctionReturn(PETSC_SUCCESS);
920: }
922: /*@
923: DMViewFromOptions - View a `DM` in a particular way based on a request in the options database
925: Collective
927: Input Parameters:
928: + dm - the `DM` object
929: . obj - optional object that provides the prefix for the options database (if `NULL` then the prefix in `obj` is used)
930: - name - option string that is used to activate viewing
932: Level: intermediate
934: Note:
935: See `PetscObjectViewFromOptions()` for a list of values that can be provided in the options database to determine how the `DM` is viewed
937: .seealso: [](ch_dmbase), `DM`, `DMView()`, `PetscObjectViewFromOptions()`, `DMCreate()`
938: @*/
939: PetscErrorCode DMViewFromOptions(DM dm, PeOp PetscObject obj, const char name[])
940: {
941: PetscFunctionBegin;
943: PetscCall(PetscObjectViewFromOptions((PetscObject)dm, obj, name));
944: PetscFunctionReturn(PETSC_SUCCESS);
945: }
947: /*@
948: DMView - Views a `DM`. Depending on the `PetscViewer` and its `PetscViewerFormat` it may print some ASCII information about the `DM` to the screen or a file or
949: save the `DM` in a binary file to be loaded later or create a visualization of the `DM`
951: Collective
953: Input Parameters:
954: + dm - the `DM` object to view
955: - v - the viewer
957: Options Database Keys:
958: + -view_pyvista_warp <f> - Warps the mesh by the active scalar with factor f
959: - -view_pyvista_clip <xl,xu,yl,yu,zl,zu> - Defines the clipping box
961: Level: beginner
963: Notes:
965: `PetscViewer` = `PETSCVIEWERHDF5` i.e. HDF5 format can be used with `PETSC_VIEWER_HDF5_PETSC` as the `PetscViewerFormat` to save multiple `DMPLEX`
966: meshes in a single HDF5 file. This in turn requires one to name the `DMPLEX` object with `PetscObjectSetName()`
967: before saving it with `DMView()` and before loading it with `DMLoad()` for identification of the mesh object.
969: `PetscViewer` = `PETSCVIEWEREXODUSII` i.e. ExodusII format assumes that element blocks (mapped to "Cell sets" labels)
970: consists of sequentially numbered cells.
972: If `dm` has been distributed, only the part of the `DM` on MPI rank 0 (including "ghost" cells and vertices) will be written.
974: Only TRI, TET, QUAD, and HEX cells are supported in ExodusII.
976: `DMPLEX` only represents geometry while most post-processing software expect that a mesh also provides information on the discretization space. This function assumes that the file represents Lagrange finite elements of order 1 or 2.
977: The order of the mesh shall be set using `PetscViewerExodusIISetOrder()`
979: Variable names can be set and queried using `PetscViewerExodusII[Set/Get][Nodal/Zonal]VariableNames[s]`.
981: .seealso: [](ch_dmbase), `DM`, `PetscViewer`, `PetscViewerFormat`, `PetscViewerSetFormat()`, `DMDestroy()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMLoad()`, `PetscObjectSetName()`
982: @*/
983: PetscErrorCode DMView(DM dm, PetscViewer v)
984: {
985: PetscBool isbinary;
986: PetscMPIInt size;
987: PetscViewerFormat format;
989: PetscFunctionBegin;
991: if (!v) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)dm), &v));
993: /* Ideally, we would like to have this test on.
994: However, it currently breaks socket viz via GLVis.
995: During DMView(parallel_mesh,glvis_viewer), each
996: process opens a sequential ASCII socket to visualize
997: the local mesh, and PetscObjectView(dm,local_socket)
998: is internally called inside VecView_GLVis, incurring
999: in an error here */
1000: /* PetscCheckSameComm(dm,1,v,2); */
1001: PetscCall(PetscViewerCheckWritable(v));
1003: PetscCall(PetscLogEventBegin(DM_View, v, 0, 0, 0));
1004: PetscCall(PetscViewerGetFormat(v, &format));
1005: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)dm), &size));
1006: if (size == 1 && format == PETSC_VIEWER_LOAD_BALANCE) PetscFunctionReturn(PETSC_SUCCESS);
1007: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)dm, v));
1008: PetscCall(PetscObjectTypeCompare((PetscObject)v, PETSCVIEWERBINARY, &isbinary));
1009: if (isbinary) {
1010: PetscInt classid = DM_FILE_CLASSID;
1011: char type[256];
1013: PetscCall(PetscViewerBinaryWrite(v, &classid, 1, PETSC_INT));
1014: PetscCall(PetscStrncpy(type, ((PetscObject)dm)->type_name, sizeof(type)));
1015: PetscCall(PetscViewerBinaryWrite(v, type, 256, PETSC_CHAR));
1016: }
1017: PetscTryTypeMethod(dm, view, v);
1018: PetscCall(PetscLogEventEnd(DM_View, v, 0, 0, 0));
1019: PetscFunctionReturn(PETSC_SUCCESS);
1020: }
1022: /*@
1023: DMCreateGlobalVector - Creates a global vector from a `DM` object. A global vector is a parallel vector that has no duplicate values shared between MPI ranks,
1024: that is it has no ghost locations.
1026: Collective
1028: Input Parameter:
1029: . dm - the `DM` object
1031: Output Parameter:
1032: . vec - the global vector
1034: Level: beginner
1036: .seealso: [](ch_dmbase), `DM`, `Vec`, `DMCreateLocalVector()`, `DMGetGlobalVector()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`,
1037: `DMGlobalToLocalBegin()`, `DMGlobalToLocalEnd()`
1038: @*/
1039: PetscErrorCode DMCreateGlobalVector(DM dm, Vec *vec)
1040: {
1041: PetscFunctionBegin;
1043: PetscAssertPointer(vec, 2);
1044: PetscUseTypeMethod(dm, createglobalvector, vec);
1045: if (PetscDefined(USE_DEBUG)) {
1046: DM vdm;
1048: PetscCall(VecGetDM(*vec, &vdm));
1049: PetscCheck(vdm, PETSC_COMM_SELF, PETSC_ERR_PLIB, "DM type '%s' did not attach the DM to the vector", ((PetscObject)dm)->type_name);
1050: }
1051: PetscFunctionReturn(PETSC_SUCCESS);
1052: }
1054: /*@
1055: DMCreateLocalVector - Creates a local vector from a `DM` object.
1057: Not Collective
1059: Input Parameter:
1060: . dm - the `DM` object
1062: Output Parameter:
1063: . vec - the local vector
1065: Level: beginner
1067: Note:
1068: A local vector usually has ghost locations that contain values that are owned by different MPI ranks. A global vector has no ghost locations.
1070: .seealso: [](ch_dmbase), `DM`, `Vec`, `DMCreateGlobalVector()`, `DMGetLocalVector()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`
1071: `DMGlobalToLocalBegin()`, `DMGlobalToLocalEnd()`
1072: @*/
1073: PetscErrorCode DMCreateLocalVector(DM dm, Vec *vec)
1074: {
1075: PetscFunctionBegin;
1077: PetscAssertPointer(vec, 2);
1078: PetscUseTypeMethod(dm, createlocalvector, vec);
1079: if (PetscDefined(USE_DEBUG)) {
1080: DM vdm;
1082: PetscCall(VecGetDM(*vec, &vdm));
1083: PetscCheck(vdm, PETSC_COMM_SELF, PETSC_ERR_LIB, "DM type '%s' did not attach the DM to the vector", ((PetscObject)dm)->type_name);
1084: }
1085: PetscFunctionReturn(PETSC_SUCCESS);
1086: }
1088: /*@
1089: DMGetLocalToGlobalMapping - Accesses the local-to-global mapping in a `DM`.
1091: Collective
1093: Input Parameter:
1094: . dm - the `DM` that provides the mapping
1096: Output Parameter:
1097: . ltog - the mapping
1099: Level: advanced
1101: Notes:
1102: The global to local mapping allows one to set values into the global vector or matrix using `VecSetValuesLocal()` and `MatSetValuesLocal()`
1104: Vectors obtained with `DMCreateGlobalVector()` and matrices obtained with `DMCreateMatrix()` already contain the global mapping so you do
1105: need to use this function with those objects.
1107: This mapping can then be used by `VecSetLocalToGlobalMapping()` or `MatSetLocalToGlobalMapping()`.
1109: .seealso: [](ch_dmbase), `DM`, `DMCreateLocalVector()`, `DMCreateGlobalVector()`, `VecSetLocalToGlobalMapping()`, `MatSetLocalToGlobalMapping()`,
1110: `DMCreateMatrix()`
1111: @*/
1112: PetscErrorCode DMGetLocalToGlobalMapping(DM dm, ISLocalToGlobalMapping *ltog)
1113: {
1114: PetscInt bs = -1, bsLocal[2], bsMinMax[2];
1116: PetscFunctionBegin;
1118: PetscAssertPointer(ltog, 2);
1119: if (!dm->ltogmap) {
1120: PetscSection section, sectionGlobal;
1122: PetscCall(DMGetLocalSection(dm, §ion));
1123: if (section) {
1124: const PetscInt *cdofs;
1125: PetscInt *ltog;
1126: PetscInt pStart, pEnd, n, p, k, l;
1128: PetscCall(DMGetGlobalSection(dm, §ionGlobal));
1129: PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
1130: PetscCall(PetscSectionGetStorageSize(section, &n));
1131: PetscCall(PetscMalloc1(n, <og)); /* We want the local+overlap size */
1132: for (p = pStart, l = 0; p < pEnd; ++p) {
1133: PetscInt bdof, cdof, dof, off, c, cind;
1135: /* Should probably use constrained dofs */
1136: PetscCall(PetscSectionGetDof(section, p, &dof));
1137: PetscCall(PetscSectionGetConstraintDof(section, p, &cdof));
1138: PetscCall(PetscSectionGetConstraintIndices(section, p, &cdofs));
1139: PetscCall(PetscSectionGetOffset(sectionGlobal, p, &off));
1140: /* If you have dofs, and constraints, and they are unequal, we set the blocksize to 1 */
1141: bdof = cdof && (dof - cdof) ? 1 : dof;
1142: if (dof) bs = bs < 0 ? bdof : PetscGCD(bs, bdof);
1144: for (c = 0, cind = 0; c < dof; ++c, ++l) {
1145: if (cind < cdof && c == cdofs[cind]) {
1146: ltog[l] = off < 0 ? off - c : -(off + c + 1);
1147: cind++;
1148: } else {
1149: ltog[l] = (off < 0 ? -(off + 1) : off) + c - cind;
1150: }
1151: }
1152: }
1153: /* Must have same blocksize on all procs (some might have no points) */
1154: bsLocal[0] = bs < 0 ? PETSC_INT_MAX : bs;
1155: bsLocal[1] = bs;
1156: PetscCall(PetscGlobalMinMaxInt(PetscObjectComm((PetscObject)dm), bsLocal, bsMinMax));
1157: if (bsMinMax[0] != bsMinMax[1]) {
1158: bs = 1;
1159: } else {
1160: bs = bsMinMax[0];
1161: }
1162: bs = bs < 0 ? 1 : bs;
1163: /* Must reduce indices by blocksize */
1164: if (bs > 1) {
1165: for (l = 0, k = 0; l < n; l += bs, ++k) {
1166: // Integer division of negative values truncates toward zero(!), not toward negative infinity
1167: ltog[k] = ltog[l] >= 0 ? ltog[l] / bs : -(-(ltog[l] + 1) / bs + 1);
1168: }
1169: n /= bs;
1170: }
1171: PetscCall(ISLocalToGlobalMappingCreate(PetscObjectComm((PetscObject)dm), bs, n, ltog, PETSC_OWN_POINTER, &dm->ltogmap));
1172: } else PetscUseTypeMethod(dm, getlocaltoglobalmapping);
1173: }
1174: *ltog = dm->ltogmap;
1175: PetscFunctionReturn(PETSC_SUCCESS);
1176: }
1178: /*@
1179: DMGetBlockSize - Gets the inherent block size associated with a `DM`
1181: Not Collective
1183: Input Parameter:
1184: . dm - the `DM` with block structure
1186: Output Parameter:
1187: . bs - the block size, 1 implies no exploitable block structure
1189: Level: intermediate
1191: Notes:
1192: This might be the number of degrees of freedom at each grid point for a structured grid.
1194: Complex `DM` that represent multiphysics or staggered grids or mixed-methods do not generally have a single inherent block size, but
1195: rather different locations in the vectors may have a different block size.
1197: .seealso: [](ch_dmbase), `DM`, `ISCreateBlock()`, `VecSetBlockSize()`, `MatSetBlockSize()`, `DMGetLocalToGlobalMapping()`
1198: @*/
1199: PetscErrorCode DMGetBlockSize(DM dm, PetscInt *bs)
1200: {
1201: PetscFunctionBegin;
1203: PetscAssertPointer(bs, 2);
1204: PetscCheck(dm->bs >= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "DM does not have enough information to provide a block size yet");
1205: *bs = dm->bs;
1206: PetscFunctionReturn(PETSC_SUCCESS);
1207: }
1209: /*@
1210: DMCreateInterpolation - Gets the interpolation matrix between two `DM` objects. The resulting matrix map degrees of freedom in the vector obtained by
1211: `DMCreateGlobalVector()` on the coarse `DM` to similar vectors on the fine grid `DM`.
1213: Collective
1215: Input Parameters:
1216: + dmc - the `DM` object
1217: - dmf - the second, finer `DM` object
1219: Output Parameters:
1220: + mat - the interpolation
1221: - vec - the scaling (optional, pass `NULL` if not needed), see `DMCreateInterpolationScale()`
1223: Level: developer
1225: Notes:
1226: For `DMDA` objects this only works for "uniform refinement", that is the refined mesh was obtained `DMRefine()` or the coarse mesh was obtained by
1227: DMCoarsen(). The coordinates set into the `DMDA` are completely ignored in computing the interpolation.
1229: For `DMDA` objects you can use this interpolation (more precisely the interpolation from the `DMGetCoordinateDM()`) to interpolate the mesh coordinate
1230: vectors EXCEPT in the periodic case where it does not make sense since the coordinate vectors are not periodic.
1232: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMRefine()`, `DMCoarsen()`, `DMCreateRestriction()`, `DMCreateInterpolationScale()`
1233: @*/
1234: PetscErrorCode DMCreateInterpolation(DM dmc, DM dmf, Mat *mat, Vec *vec)
1235: {
1236: PetscFunctionBegin;
1239: PetscAssertPointer(mat, 3);
1240: PetscCall(PetscLogEventBegin(DM_CreateInterpolation, dmc, dmf, 0, 0));
1241: PetscUseTypeMethod(dmc, createinterpolation, dmf, mat, vec);
1242: PetscCall(PetscLogEventEnd(DM_CreateInterpolation, dmc, dmf, 0, 0));
1243: PetscFunctionReturn(PETSC_SUCCESS);
1244: }
1246: /*@
1247: DMCreateInterpolationScale - Forms L = 1/(R*1) where 1 is the vector of all ones, and R is
1248: the transpose of the interpolation between the `DM`.
1250: Input Parameters:
1251: + dac - `DM` that defines a coarse mesh
1252: . daf - `DM` that defines a fine mesh
1253: - mat - the restriction (or interpolation operator) from fine to coarse
1255: Output Parameter:
1256: . scale - the scaled vector
1258: Level: advanced
1260: Note:
1261: xcoarse = diag(L)*R*xfine preserves scale and is thus suitable for state (versus residual)
1262: restriction. In other words xcoarse is the coarse representation of xfine.
1264: Developer Note:
1265: If the fine-scale `DMDA` has the -dm_bind_below option set to true, then `DMCreateInterpolationScale()` calls `MatSetBindingPropagates()`
1266: on the restriction/interpolation operator to set the bindingpropagates flag to true.
1268: .seealso: [](ch_dmbase), `DM`, `MatRestrict()`, `MatInterpolate()`, `DMCreateInterpolation()`, `DMCreateRestriction()`, `DMCreateGlobalVector()`
1269: @*/
1270: PetscErrorCode DMCreateInterpolationScale(DM dac, DM daf, Mat mat, Vec *scale)
1271: {
1272: Vec fine;
1273: PetscScalar one = 1.0;
1274: #if defined(PETSC_HAVE_CUDA)
1275: PetscBool bindingpropagates, isbound;
1276: #endif
1278: PetscFunctionBegin;
1279: PetscCall(DMCreateGlobalVector(daf, &fine));
1280: PetscCall(DMCreateGlobalVector(dac, scale));
1281: PetscCall(VecSet(fine, one));
1282: #if defined(PETSC_HAVE_CUDA)
1283: /* If the 'fine' Vec is bound to the CPU, it makes sense to bind 'mat' as well.
1284: * Note that we only do this for the CUDA case, right now, but if we add support for MatMultTranspose() via ViennaCL,
1285: * we'll need to do it for that case, too.*/
1286: PetscCall(VecGetBindingPropagates(fine, &bindingpropagates));
1287: if (bindingpropagates) {
1288: PetscCall(MatSetBindingPropagates(mat, PETSC_TRUE));
1289: PetscCall(VecBoundToCPU(fine, &isbound));
1290: PetscCall(MatBindToCPU(mat, isbound));
1291: }
1292: #endif
1293: PetscCall(MatRestrict(mat, fine, *scale));
1294: PetscCall(VecDestroy(&fine));
1295: PetscCall(VecReciprocal(*scale));
1296: PetscFunctionReturn(PETSC_SUCCESS);
1297: }
1299: /*@
1300: DMCreateRestriction - Gets restriction matrix between two `DM` objects. The resulting matrix map degrees of freedom in the vector obtained by
1301: `DMCreateGlobalVector()` on the fine `DM` to similar vectors on the coarse grid `DM`.
1303: Collective
1305: Input Parameters:
1306: + dmc - the `DM` object
1307: - dmf - the second, finer `DM` object
1309: Output Parameter:
1310: . mat - the restriction
1312: Level: developer
1314: Note:
1315: This only works for `DMSTAG`. For many situations either the transpose of the operator obtained with `DMCreateInterpolation()` or that
1316: matrix multiplied by the vector obtained with `DMCreateInterpolationScale()` provides the desired object.
1318: .seealso: [](ch_dmbase), `DM`, `DMRestrict()`, `DMInterpolate()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMRefine()`, `DMCoarsen()`, `DMCreateInterpolation()`
1319: @*/
1320: PetscErrorCode DMCreateRestriction(DM dmc, DM dmf, Mat *mat)
1321: {
1322: PetscFunctionBegin;
1325: PetscAssertPointer(mat, 3);
1326: PetscCall(PetscLogEventBegin(DM_CreateRestriction, dmc, dmf, 0, 0));
1327: PetscUseTypeMethod(dmc, createrestriction, dmf, mat);
1328: PetscCall(PetscLogEventEnd(DM_CreateRestriction, dmc, dmf, 0, 0));
1329: PetscFunctionReturn(PETSC_SUCCESS);
1330: }
1332: /*@
1333: DMCreateInjection - Gets injection matrix between two `DM` objects.
1335: Collective
1337: Input Parameters:
1338: + dac - the `DM` object
1339: - daf - the second, finer `DM` object
1341: Output Parameter:
1342: . mat - the injection
1344: Level: developer
1346: Notes:
1347: This is an operator that applied to a vector obtained with `DMCreateGlobalVector()` on the
1348: fine grid maps the values to a vector on the vector on the coarse `DM` by simply selecting
1349: the values on the coarse grid points. This compares to the operator obtained by
1350: `DMCreateRestriction()` or the transpose of the operator obtained by
1351: `DMCreateInterpolation()` that uses a "local weighted average" of the values around the
1352: coarse grid point as the coarse grid value.
1354: For `DMDA` objects this only works for "uniform refinement", that is the refined mesh was obtained `DMRefine()` or the coarse mesh was obtained by
1355: `DMCoarsen()`. The coordinates set into the `DMDA` are completely ignored in computing the injection.
1357: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMCreateInterpolation()`,
1358: `DMCreateRestriction()`, `MatRestrict()`, `MatInterpolate()`
1359: @*/
1360: PetscErrorCode DMCreateInjection(DM dac, DM daf, Mat *mat)
1361: {
1362: PetscFunctionBegin;
1365: PetscAssertPointer(mat, 3);
1366: PetscCall(PetscLogEventBegin(DM_CreateInjection, dac, daf, 0, 0));
1367: PetscUseTypeMethod(dac, createinjection, daf, mat);
1368: PetscCall(PetscLogEventEnd(DM_CreateInjection, dac, daf, 0, 0));
1369: PetscFunctionReturn(PETSC_SUCCESS);
1370: }
1372: /*@
1373: DMCreateMassMatrix - Gets the mass matrix between two `DM` objects, M_ij = \int \phi_i \psi_j where the \phi are Galerkin basis functions for a
1374: a Galerkin finite element model on the `DM`
1376: Collective
1378: Input Parameters:
1379: + dmc - the target `DM` object
1380: - dmf - the source `DM` object, can be `NULL`
1382: Output Parameter:
1383: . mat - the mass matrix
1385: Level: developer
1387: Notes:
1388: For `DMPLEX` the finite element model for the `DM` must have been already provided.
1390: if `dmc` is `dmf` or `NULL`, then x^t M x is an approximation to the L2 norm of the vector x which is obtained by `DMCreateGlobalVector()`
1392: .seealso: [](ch_dmbase), `DM`, `DMCreateMassMatrixLumped()`, `DMCreateMatrix()`, `DMRefine()`, `DMCoarsen()`, `DMCreateRestriction()`, `DMCreateInterpolation()`, `DMCreateInjection()`
1393: @*/
1394: PetscErrorCode DMCreateMassMatrix(DM dmc, DM dmf, Mat *mat)
1395: {
1396: PetscFunctionBegin;
1398: if (!dmf) dmf = dmc;
1400: PetscAssertPointer(mat, 3);
1401: PetscCall(PetscLogEventBegin(DM_CreateMassMatrix, dmc, dmf, 0, 0));
1402: PetscUseTypeMethod(dmc, createmassmatrix, dmf, mat);
1403: PetscCall(PetscLogEventEnd(DM_CreateMassMatrix, dmc, dmf, 0, 0));
1404: PetscFunctionReturn(PETSC_SUCCESS);
1405: }
1407: /*@
1408: DMCreateMassMatrixLumped - Gets the lumped mass matrix for a given `DM`
1410: Collective
1412: Input Parameter:
1413: . dm - the `DM` object
1415: Output Parameters:
1416: + llm - the local lumped mass matrix, which is a diagonal matrix, represented as a vector
1417: - lm - the global lumped mass matrix, which is a diagonal matrix, represented as a vector
1419: Level: developer
1421: Note:
1422: See `DMCreateMassMatrix()` for how to create the non-lumped version of the mass matrix.
1424: .seealso: [](ch_dmbase), `DM`, `DMCreateMassMatrix()`, `DMCreateMatrix()`, `DMRefine()`, `DMCoarsen()`, `DMCreateRestriction()`, `DMCreateInterpolation()`, `DMCreateInjection()`
1425: @*/
1426: PetscErrorCode DMCreateMassMatrixLumped(DM dm, Vec *llm, Vec *lm)
1427: {
1428: PetscFunctionBegin;
1430: if (llm) PetscAssertPointer(llm, 2);
1431: if (lm) PetscAssertPointer(lm, 3);
1432: if (llm || lm) PetscUseTypeMethod(dm, createmassmatrixlumped, llm, lm);
1433: PetscFunctionReturn(PETSC_SUCCESS);
1434: }
1436: /*@
1437: DMCreateColoring - Gets coloring of a graph associated with the `DM`. Often the graph represents the operator matrix associated with the discretization
1438: of a PDE on the `DM`.
1440: Collective
1442: Input Parameters:
1443: + dm - the `DM` object
1444: - ctype - `IS_COLORING_LOCAL` or `IS_COLORING_GLOBAL`
1446: Output Parameter:
1447: . coloring - the coloring
1449: Level: developer
1451: Notes:
1452: Coloring of matrices can also be computed directly from the sparse matrix nonzero structure via the `MatColoring` object or from the mesh from which the
1453: matrix comes from (what this function provides). In general using the mesh produces a more optimal coloring (fewer colors).
1455: This produces a coloring with the distance of 2, see `MatSetColoringDistance()` which can be used for efficiently computing Jacobians with `MatFDColoringCreate()`
1456: For `DMDA` in three dimensions with periodic boundary conditions the number of grid points in each dimension must be divisible by 2*stencil_width + 1,
1457: otherwise an error will be generated.
1459: .seealso: [](ch_dmbase), `DM`, `ISColoring`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatType()`, `MatColoring`, `MatFDColoringCreate()`
1460: @*/
1461: PetscErrorCode DMCreateColoring(DM dm, ISColoringType ctype, ISColoring *coloring)
1462: {
1463: PetscFunctionBegin;
1465: PetscAssertPointer(coloring, 3);
1466: PetscUseTypeMethod(dm, getcoloring, ctype, coloring);
1467: PetscFunctionReturn(PETSC_SUCCESS);
1468: }
1470: /*@
1471: DMCreateMatrix - Gets an empty matrix for a `DM` that is most commonly used to store the Jacobian of a discrete PDE operator.
1473: Collective
1475: Input Parameter:
1476: . dm - the `DM` object
1478: Output Parameter:
1479: . mat - the empty Jacobian
1481: Options Database Key:
1482: . -dm_preallocate_only - Only preallocate the matrix for `DMCreateMatrix()` and `DMCreateMassMatrix()`, but do not fill it with zeros
1484: Level: beginner
1486: Notes:
1487: This properly preallocates the number of nonzeros in the sparse matrix so you
1488: do not need to do it yourself.
1490: By default it also sets the nonzero structure and puts in the zero entries. To prevent setting
1491: the nonzero pattern call `DMSetMatrixPreallocateOnly()`
1493: For `DMDA`, when you call `MatView()` on this matrix it is displayed using the global natural ordering, NOT in the ordering used
1494: internally by PETSc.
1496: For `DMDA`, in general it is easiest to use `MatSetValuesStencil()` or `MatSetValuesLocal()` to put values into the matrix because
1497: `MatSetValues()` requires the indices for the global numbering for the `DMDA` which is complic`ated to compute
1499: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMSetMatType()`, `DMCreateMassMatrix()`
1500: @*/
1501: PetscErrorCode DMCreateMatrix(DM dm, Mat *mat)
1502: {
1503: PetscFunctionBegin;
1505: PetscAssertPointer(mat, 2);
1506: PetscCall(MatInitializePackage());
1507: PetscCall(PetscLogEventBegin(DM_CreateMatrix, 0, 0, 0, 0));
1508: PetscUseTypeMethod(dm, creatematrix, mat);
1509: if (PetscDefined(USE_DEBUG)) {
1510: DM mdm;
1512: PetscCall(MatGetDM(*mat, &mdm));
1513: PetscCheck(mdm, PETSC_COMM_SELF, PETSC_ERR_PLIB, "DM type '%s' did not attach the DM to the matrix", ((PetscObject)dm)->type_name);
1514: }
1515: /* Handle nullspace and near nullspace */
1516: if (dm->Nf) {
1517: MatNullSpace nullSpace;
1518: PetscInt Nf, f;
1520: PetscCall(DMGetNumFields(dm, &Nf));
1521: for (f = 0; f < Nf; ++f) {
1522: if (dm->nullspaceConstructors[f]) {
1523: PetscCall((*dm->nullspaceConstructors[f])(dm, f, f, &nullSpace));
1524: PetscCall(MatSetNullSpace(*mat, nullSpace));
1525: PetscCall(MatNullSpaceDestroy(&nullSpace));
1526: break;
1527: }
1528: }
1529: for (f = 0; f < Nf; ++f) {
1530: if (dm->nearnullspaceConstructors[f]) {
1531: PetscCall((*dm->nearnullspaceConstructors[f])(dm, f, f, &nullSpace));
1532: PetscCall(MatSetNearNullSpace(*mat, nullSpace));
1533: PetscCall(MatNullSpaceDestroy(&nullSpace));
1534: }
1535: }
1536: }
1537: PetscCall(PetscLogEventEnd(DM_CreateMatrix, 0, 0, 0, 0));
1538: PetscFunctionReturn(PETSC_SUCCESS);
1539: }
1541: /*@
1542: DMSetMatrixPreallocateSkip - When `DMCreateMatrix()` is called the matrix sizes and
1543: `ISLocalToGlobalMapping` will be properly set, but the data structures to store values in the
1544: matrices will not be preallocated.
1546: Logically Collective
1548: Input Parameters:
1549: + dm - the `DM`
1550: - skip - `PETSC_TRUE` to skip preallocation
1552: Level: developer
1554: Note:
1555: This is most useful to reduce initialization costs when `MatSetPreallocationCOO()` and
1556: `MatSetValuesCOO()` will be used.
1558: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `DMSetMatrixStructureOnly()`, `DMSetMatrixPreallocateOnly()`
1559: @*/
1560: PetscErrorCode DMSetMatrixPreallocateSkip(DM dm, PetscBool skip)
1561: {
1562: PetscFunctionBegin;
1564: dm->prealloc_skip = skip;
1565: PetscFunctionReturn(PETSC_SUCCESS);
1566: }
1568: /*@
1569: DMSetMatrixPreallocateOnly - When `DMCreateMatrix()` is called the matrix will be properly
1570: preallocated but the nonzero structure and zero values will not be set.
1572: Logically Collective
1574: Input Parameters:
1575: + dm - the `DM`
1576: - only - `PETSC_TRUE` if only want preallocation
1578: Options Database Key:
1579: . -dm_preallocate_only - Only preallocate the matrix for `DMCreateMatrix()`, `DMCreateMassMatrix()`, but do not fill it with zeros
1581: Level: developer
1583: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixStructureOnly()`, `DMSetMatrixPreallocateSkip()`
1584: @*/
1585: PetscErrorCode DMSetMatrixPreallocateOnly(DM dm, PetscBool only)
1586: {
1587: PetscFunctionBegin;
1589: dm->prealloc_only = only;
1590: PetscFunctionReturn(PETSC_SUCCESS);
1591: }
1593: /*@
1594: DMSetMatrixStructureOnly - When `DMCreateMatrix()` is called, the matrix nonzero structure will be created
1595: but the array for numerical values will not be allocated.
1597: Logically Collective
1599: Input Parameters:
1600: + dm - the `DM`
1601: - only - `PETSC_TRUE` if you only want matrix nonzero structure
1603: Level: developer
1605: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `DMSetMatrixPreallocateOnly()`, `DMSetMatrixPreallocateSkip()`
1606: @*/
1607: PetscErrorCode DMSetMatrixStructureOnly(DM dm, PetscBool only)
1608: {
1609: PetscFunctionBegin;
1611: dm->structure_only = only;
1612: PetscFunctionReturn(PETSC_SUCCESS);
1613: }
1615: /*@
1616: DMSetBlockingType - set the blocking granularity to be used for variable block size `DMCreateMatrix()` is called
1618: Logically Collective
1620: Input Parameters:
1621: + dm - the `DM`
1622: - btype - block by topological point or field node
1624: Options Database Key:
1625: . -dm_blocking_type [topological_point, field_node] - use topological point blocking or field node blocking
1627: Level: advanced
1629: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `MatSetVariableBlockSizes()`
1630: @*/
1631: PetscErrorCode DMSetBlockingType(DM dm, DMBlockingType btype)
1632: {
1633: PetscFunctionBegin;
1635: dm->blocking_type = btype;
1636: PetscFunctionReturn(PETSC_SUCCESS);
1637: }
1639: /*@
1640: DMGetBlockingType - get the blocking granularity to be used for variable block size `DMCreateMatrix()` is called
1642: Not Collective
1644: Input Parameter:
1645: . dm - the `DM`
1647: Output Parameter:
1648: . btype - block by topological point or field node
1650: Level: advanced
1652: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `MatSetVariableBlockSizes()`
1653: @*/
1654: PetscErrorCode DMGetBlockingType(DM dm, DMBlockingType *btype)
1655: {
1656: PetscFunctionBegin;
1658: PetscAssertPointer(btype, 2);
1659: *btype = dm->blocking_type;
1660: PetscFunctionReturn(PETSC_SUCCESS);
1661: }
1663: /*@C
1664: DMGetWorkArray - Gets a work array guaranteed to be at least the input size, restore with `DMRestoreWorkArray()`
1666: Not Collective
1668: Input Parameters:
1669: + dm - the `DM` object
1670: . count - The minimum size
1671: - dtype - MPI data type, often `MPIU_REAL`, `MPIU_SCALAR`, or `MPIU_INT`)
1673: Output Parameter:
1674: . mem - the work array
1676: Level: developer
1678: Notes:
1679: A `DM` may stash the array between instantiations so using this routine may be more efficient than calling `PetscMalloc()`
1681: The array may contain nonzero values
1683: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMCreate()`, `DMRestoreWorkArray()`, `PetscMalloc()`
1684: @*/
1685: PetscErrorCode DMGetWorkArray(DM dm, PetscInt count, MPI_Datatype dtype, void *mem)
1686: {
1687: DMWorkLink link;
1688: PetscMPIInt dsize;
1690: PetscFunctionBegin;
1692: PetscAssertPointer(mem, 4);
1693: if (!count) {
1694: *(void **)mem = NULL;
1695: PetscFunctionReturn(PETSC_SUCCESS);
1696: }
1697: if (dm->workin) {
1698: link = dm->workin;
1699: dm->workin = dm->workin->next;
1700: } else {
1701: PetscCall(PetscNew(&link));
1702: }
1703: /* Avoid MPI_Type_size for most used datatypes
1704: Get size directly */
1705: if (dtype == MPIU_INT) dsize = sizeof(PetscInt);
1706: else if (dtype == MPIU_REAL) dsize = sizeof(PetscReal);
1707: #if defined(PETSC_USE_64BIT_INDICES)
1708: else if (dtype == MPI_INT) dsize = sizeof(int);
1709: #endif
1710: #if defined(PETSC_USE_COMPLEX)
1711: else if (dtype == MPIU_SCALAR) dsize = sizeof(PetscScalar);
1712: #endif
1713: else PetscCallMPI(MPI_Type_size(dtype, &dsize));
1715: if (((size_t)dsize * count) > link->bytes) {
1716: PetscCall(PetscFree(link->mem));
1717: PetscCall(PetscMalloc(dsize * count, &link->mem));
1718: link->bytes = dsize * count;
1719: }
1720: link->next = dm->workout;
1721: dm->workout = link;
1722: *(void **)mem = link->mem;
1723: PetscFunctionReturn(PETSC_SUCCESS);
1724: }
1726: /*@C
1727: DMRestoreWorkArray - Restores a work array obtained with `DMCreateWorkArray()`
1729: Not Collective
1731: Input Parameters:
1732: + dm - the `DM` object
1733: . count - The minimum size
1734: - dtype - MPI data type, often `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_INT`
1736: Output Parameter:
1737: . mem - the work array
1739: Level: developer
1741: Developer Note:
1742: count and dtype are ignored, they are only needed for `DMGetWorkArray()`
1744: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMCreate()`, `DMGetWorkArray()`
1745: @*/
1746: PetscErrorCode DMRestoreWorkArray(DM dm, PetscInt count, MPI_Datatype dtype, void *mem)
1747: {
1748: DMWorkLink *p, link;
1750: PetscFunctionBegin;
1751: PetscAssertPointer(mem, 4);
1752: (void)count;
1753: (void)dtype;
1754: if (!*(void **)mem) PetscFunctionReturn(PETSC_SUCCESS);
1755: for (p = &dm->workout; (link = *p); p = &link->next) {
1756: if (link->mem == *(void **)mem) {
1757: *p = link->next;
1758: link->next = dm->workin;
1759: dm->workin = link;
1760: *(void **)mem = NULL;
1761: PetscFunctionReturn(PETSC_SUCCESS);
1762: }
1763: }
1764: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Array was not checked out");
1765: }
1767: /*@C
1768: DMSetNullSpaceConstructor - Provide a callback function which constructs the nullspace for a given field, defined with `DMAddField()`, when function spaces
1769: are joined or split, such as in `DMCreateSubDM()`
1771: Logically Collective; No Fortran Support
1773: Input Parameters:
1774: + dm - The `DM`
1775: . field - The field number for the nullspace
1776: - nullsp - A callback to create the nullspace
1778: Calling sequence of `nullsp`:
1779: + dm - The present `DM`
1780: . origField - The field number given above, in the original `DM`
1781: . field - The field number in dm
1782: - nullSpace - The nullspace for the given field
1784: Level: intermediate
1786: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetNullSpaceConstructor()`, `DMSetNearNullSpaceConstructor()`, `DMGetNearNullSpaceConstructor()`, `DMCreateSubDM()`, `DMCreateSuperDM()`
1787: @*/
1788: PetscErrorCode DMSetNullSpaceConstructor(DM dm, PetscInt field, PetscErrorCode (*nullsp)(DM dm, PetscInt origField, PetscInt field, MatNullSpace *nullSpace))
1789: {
1790: PetscFunctionBegin;
1792: PetscCheck(field < 10, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle %" PetscInt_FMT " >= 10 fields", field);
1793: dm->nullspaceConstructors[field] = nullsp;
1794: PetscFunctionReturn(PETSC_SUCCESS);
1795: }
1797: /*@C
1798: DMGetNullSpaceConstructor - Return the callback function which constructs the nullspace for a given field, defined with `DMAddField()`
1800: Not Collective; No Fortran Support
1802: Input Parameters:
1803: + dm - The `DM`
1804: - field - The field number for the nullspace
1806: Output Parameter:
1807: . nullsp - A callback to create the nullspace
1809: Calling sequence of `nullsp`:
1810: + dm - The present DM
1811: . origField - The field number given above, in the original DM
1812: . field - The field number in dm
1813: - nullSpace - The nullspace for the given field
1815: Level: intermediate
1817: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetField()`, `DMSetNullSpaceConstructor()`, `DMSetNearNullSpaceConstructor()`, `DMGetNearNullSpaceConstructor()`, `DMCreateSubDM()`, `DMCreateSuperDM()`
1818: @*/
1819: PetscErrorCode DMGetNullSpaceConstructor(DM dm, PetscInt field, PetscErrorCode (**nullsp)(DM dm, PetscInt origField, PetscInt field, MatNullSpace *nullSpace))
1820: {
1821: PetscFunctionBegin;
1823: PetscAssertPointer(nullsp, 3);
1824: PetscCheck(field < 10, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle %" PetscInt_FMT " >= 10 fields", field);
1825: *nullsp = dm->nullspaceConstructors[field];
1826: PetscFunctionReturn(PETSC_SUCCESS);
1827: }
1829: /*@C
1830: DMSetNearNullSpaceConstructor - Provide a callback function which constructs the near-nullspace for a given field, defined with `DMAddField()`
1832: Logically Collective; No Fortran Support
1834: Input Parameters:
1835: + dm - The `DM`
1836: . field - The field number for the nullspace
1837: - nullsp - A callback to create the near-nullspace
1839: Calling sequence of `nullsp`:
1840: + dm - The present `DM`
1841: . origField - The field number given above, in the original `DM`
1842: . field - The field number in dm
1843: - nullSpace - The nullspace for the given field
1845: Level: intermediate
1847: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetNearNullSpaceConstructor()`, `DMSetNullSpaceConstructor()`, `DMGetNullSpaceConstructor()`, `DMCreateSubDM()`, `DMCreateSuperDM()`,
1848: `MatNullSpace`
1849: @*/
1850: PetscErrorCode DMSetNearNullSpaceConstructor(DM dm, PetscInt field, PetscErrorCode (*nullsp)(DM dm, PetscInt origField, PetscInt field, MatNullSpace *nullSpace))
1851: {
1852: PetscFunctionBegin;
1854: PetscCheck(field < 10, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle %" PetscInt_FMT " >= 10 fields", field);
1855: dm->nearnullspaceConstructors[field] = nullsp;
1856: PetscFunctionReturn(PETSC_SUCCESS);
1857: }
1859: /*@C
1860: DMGetNearNullSpaceConstructor - Return the callback function which constructs the near-nullspace for a given field, defined with `DMAddField()`
1862: Not Collective; No Fortran Support
1864: Input Parameters:
1865: + dm - The `DM`
1866: - field - The field number for the nullspace
1868: Output Parameter:
1869: . nullsp - A callback to create the near-nullspace
1871: Calling sequence of `nullsp`:
1872: + dm - The present `DM`
1873: . origField - The field number given above, in the original `DM`
1874: . field - The field number in dm
1875: - nullSpace - The nullspace for the given field
1877: Level: intermediate
1879: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetField()`, `DMSetNearNullSpaceConstructor()`, `DMSetNullSpaceConstructor()`, `DMGetNullSpaceConstructor()`, `DMCreateSubDM()`,
1880: `MatNullSpace`, `DMCreateSuperDM()`
1881: @*/
1882: PetscErrorCode DMGetNearNullSpaceConstructor(DM dm, PetscInt field, PetscErrorCode (**nullsp)(DM dm, PetscInt origField, PetscInt field, MatNullSpace *nullSpace))
1883: {
1884: PetscFunctionBegin;
1886: PetscAssertPointer(nullsp, 3);
1887: PetscCheck(field < 10, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle %" PetscInt_FMT " >= 10 fields", field);
1888: *nullsp = dm->nearnullspaceConstructors[field];
1889: PetscFunctionReturn(PETSC_SUCCESS);
1890: }
1892: /*@C
1893: DMCreateFieldIS - Creates a set of `IS` objects with the global indices of dofs for each field defined with `DMAddField()`
1895: Not Collective; No Fortran Support
1897: Input Parameter:
1898: . dm - the `DM` object
1900: Output Parameters:
1901: + numFields - The number of fields (or `NULL` if not requested)
1902: . fieldNames - The name of each field (or `NULL` if not requested)
1903: - fields - The global indices for each field (or `NULL` if not requested)
1905: Level: intermediate
1907: Note:
1908: The user is responsible for freeing all requested arrays. In particular, every entry of `fieldNames` should be freed with
1909: `PetscFree()`, every entry of `fields` should be destroyed with `ISDestroy()`, and both arrays should be freed with
1910: `PetscFree()`.
1912: Developer Note:
1913: It is not clear why both this function and `DMCreateFieldDecomposition()` exist. Having two seems redundant and confusing. This function should
1914: likely be removed.
1916: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetField()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`,
1917: `DMCreateFieldDecomposition()`
1918: @*/
1919: PetscErrorCode DMCreateFieldIS(DM dm, PetscInt *numFields, char ***fieldNames, IS *fields[])
1920: {
1921: PetscSection section, sectionGlobal;
1923: PetscFunctionBegin;
1925: if (numFields) {
1926: PetscAssertPointer(numFields, 2);
1927: *numFields = 0;
1928: }
1929: if (fieldNames) {
1930: PetscAssertPointer(fieldNames, 3);
1931: *fieldNames = NULL;
1932: }
1933: if (fields) {
1934: PetscAssertPointer(fields, 4);
1935: *fields = NULL;
1936: }
1937: PetscCall(DMGetLocalSection(dm, §ion));
1938: if (section) {
1939: PetscInt *fieldSizes, *fieldNc, **fieldIndices;
1940: PetscInt nF, f, pStart, pEnd, p;
1942: PetscCall(DMGetGlobalSection(dm, §ionGlobal));
1943: PetscCall(PetscSectionGetNumFields(section, &nF));
1944: PetscCall(PetscMalloc3(nF, &fieldSizes, nF, &fieldNc, nF, &fieldIndices));
1945: PetscCall(PetscSectionGetChart(sectionGlobal, &pStart, &pEnd));
1946: for (f = 0; f < nF; ++f) {
1947: fieldSizes[f] = 0;
1948: PetscCall(PetscSectionGetFieldComponents(section, f, &fieldNc[f]));
1949: }
1950: for (p = pStart; p < pEnd; ++p) {
1951: PetscInt gdof;
1953: PetscCall(PetscSectionGetDof(sectionGlobal, p, &gdof));
1954: if (gdof > 0) {
1955: for (f = 0; f < nF; ++f) {
1956: PetscInt fdof, fcdof, fpdof;
1958: PetscCall(PetscSectionGetFieldDof(section, p, f, &fdof));
1959: PetscCall(PetscSectionGetFieldConstraintDof(section, p, f, &fcdof));
1960: fpdof = fdof - fcdof;
1961: if (fpdof && fpdof != fieldNc[f]) {
1962: /* Layout does not admit a pointwise block size */
1963: fieldNc[f] = 1;
1964: }
1965: fieldSizes[f] += fpdof;
1966: }
1967: }
1968: }
1969: for (f = 0; f < nF; ++f) {
1970: PetscCall(PetscMalloc1(fieldSizes[f], &fieldIndices[f]));
1971: fieldSizes[f] = 0;
1972: }
1973: for (p = pStart; p < pEnd; ++p) {
1974: PetscInt gdof, goff;
1976: PetscCall(PetscSectionGetDof(sectionGlobal, p, &gdof));
1977: if (gdof > 0) {
1978: PetscCall(PetscSectionGetOffset(sectionGlobal, p, &goff));
1979: for (f = 0; f < nF; ++f) {
1980: PetscInt fdof, fcdof, fc;
1982: PetscCall(PetscSectionGetFieldDof(section, p, f, &fdof));
1983: PetscCall(PetscSectionGetFieldConstraintDof(section, p, f, &fcdof));
1984: for (fc = 0; fc < fdof - fcdof; ++fc, ++fieldSizes[f]) fieldIndices[f][fieldSizes[f]] = goff++;
1985: }
1986: }
1987: }
1988: if (numFields) *numFields = nF;
1989: if (fieldNames) {
1990: PetscCall(PetscMalloc1(nF, fieldNames));
1991: for (f = 0; f < nF; ++f) {
1992: const char *fieldName;
1994: PetscCall(PetscSectionGetFieldName(section, f, &fieldName));
1995: PetscCall(PetscStrallocpy(fieldName, &(*fieldNames)[f]));
1996: }
1997: }
1998: if (fields) {
1999: PetscCall(PetscMalloc1(nF, fields));
2000: for (f = 0; f < nF; ++f) {
2001: PetscInt bs, in[2], out[2];
2003: PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)dm), fieldSizes[f], fieldIndices[f], PETSC_OWN_POINTER, &(*fields)[f]));
2004: in[0] = -fieldNc[f];
2005: in[1] = fieldNc[f];
2006: PetscCallMPI(MPIU_Allreduce(in, out, 2, MPIU_INT, MPI_MAX, PetscObjectComm((PetscObject)dm)));
2007: bs = (-out[0] == out[1]) ? out[1] : 1;
2008: PetscCall(ISSetBlockSize((*fields)[f], bs));
2009: }
2010: }
2011: PetscCall(PetscFree3(fieldSizes, fieldNc, fieldIndices));
2012: } else PetscTryTypeMethod(dm, createfieldis, numFields, fieldNames, fields);
2013: PetscFunctionReturn(PETSC_SUCCESS);
2014: }
2016: /*@C
2017: DMCreateFieldDecomposition - Returns a list of `IS` objects defining a decomposition of a problem into subproblems
2018: corresponding to different fields.
2020: Not Collective; No Fortran Support
2022: Input Parameter:
2023: . dm - the `DM` object
2025: Output Parameters:
2026: + len - The number of fields (or `NULL` if not requested)
2027: . namelist - The name for each field (or `NULL` if not requested)
2028: . islist - The global indices for each field (or `NULL` if not requested)
2029: - dmlist - The `DM`s for each field subproblem (or `NULL`, if not requested; if `NULL` is returned, no `DM`s are defined)
2031: Level: intermediate
2033: Notes:
2034: Each `IS` contains the global indices of the dofs of the corresponding field, defined by
2035: `DMAddField()`. The optional list of `DM`s define the `DM` for each subproblem.
2037: The same as `DMCreateFieldIS()` but also returns a `DM` for each field.
2039: The user is responsible for freeing all requested arrays. In particular, every entry of `namelist` should be freed with
2040: `PetscFree()`, every entry of `islist` should be destroyed with `ISDestroy()`, every entry of `dmlist` should be destroyed with `DMDestroy()`,
2041: and all of the arrays should be freed with `PetscFree()`.
2043: Developer Notes:
2044: It is not clear why this function and `DMCreateFieldIS()` exist. Having two seems redundant and confusing.
2046: Unlike `DMRefine()`, `DMCoarsen()`, and `DMCreateDomainDecomposition()` this provides no mechanism to provide hooks that are called after the
2047: decomposition is computed.
2049: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMCreateFieldIS()`, `DMCreateSubDM()`, `DMCreateDomainDecomposition()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMRefine()`, `DMCoarsen()`
2050: @*/
2051: PetscErrorCode DMCreateFieldDecomposition(DM dm, PetscInt *len, char ***namelist, IS *islist[], DM *dmlist[])
2052: {
2053: PetscFunctionBegin;
2055: if (len) {
2056: PetscAssertPointer(len, 2);
2057: *len = 0;
2058: }
2059: if (namelist) {
2060: PetscAssertPointer(namelist, 3);
2061: *namelist = NULL;
2062: }
2063: if (islist) {
2064: PetscAssertPointer(islist, 4);
2065: *islist = NULL;
2066: }
2067: if (dmlist) {
2068: PetscAssertPointer(dmlist, 5);
2069: *dmlist = NULL;
2070: }
2071: /*
2072: Is it a good idea to apply the following check across all impls?
2073: Perhaps some impls can have a well-defined decomposition before DMSetUp?
2074: This, however, follows the general principle that accessors are not well-behaved until the object is set up.
2075: */
2076: PetscCheck(dm->setupcalled, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "Decomposition defined only after DMSetUp");
2077: if (!dm->ops->createfielddecomposition) {
2078: PetscSection section;
2079: PetscInt numFields, f;
2081: PetscCall(DMGetLocalSection(dm, §ion));
2082: if (section) PetscCall(PetscSectionGetNumFields(section, &numFields));
2083: if (section && numFields && dm->ops->createsubdm) {
2084: if (len) *len = numFields;
2085: if (namelist) PetscCall(PetscMalloc1(numFields, namelist));
2086: if (islist) PetscCall(PetscMalloc1(numFields, islist));
2087: if (dmlist) PetscCall(PetscMalloc1(numFields, dmlist));
2088: for (f = 0; f < numFields; ++f) {
2089: const char *fieldName;
2091: PetscCall(DMCreateSubDM(dm, 1, &f, islist ? &(*islist)[f] : NULL, dmlist ? &(*dmlist)[f] : NULL));
2092: if (namelist) {
2093: PetscCall(PetscSectionGetFieldName(section, f, &fieldName));
2094: PetscCall(PetscStrallocpy(fieldName, &(*namelist)[f]));
2095: }
2096: }
2097: } else {
2098: PetscCall(DMCreateFieldIS(dm, len, namelist, islist));
2099: /* By default there are no DMs associated with subproblems. */
2100: if (dmlist) *dmlist = NULL;
2101: }
2102: } else PetscUseTypeMethod(dm, createfielddecomposition, len, namelist, islist, dmlist);
2103: PetscFunctionReturn(PETSC_SUCCESS);
2104: }
2106: /*@
2107: DMCreateSubDM - Returns an `IS` and `DM` encapsulating a subproblem defined by the fields passed in.
2108: The fields are defined by `DMCreateFieldIS()`.
2110: Not collective
2112: Input Parameters:
2113: + dm - The `DM` object
2114: . numFields - The number of fields to select
2115: - fields - The field numbers of the selected fields
2117: Output Parameters:
2118: + is - The global indices for all the degrees of freedom in the new sub `DM`, use `NULL` if not needed
2119: - subdm - The `DM` for the subproblem, use `NULL` if not needed
2121: Level: intermediate
2123: Note:
2124: You need to call `DMPlexSetMigrationSF()` on the original `DM` if you want the Global-To-Natural map to be automatically constructed
2126: .seealso: [](ch_dmbase), `DM`, `DMCreateFieldIS()`, `DMCreateFieldDecomposition()`, `DMAddField()`, `DMCreateSuperDM()`, `IS`, `DMPlexSetMigrationSF()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`
2127: @*/
2128: PetscErrorCode DMCreateSubDM(DM dm, PetscInt numFields, const PetscInt fields[], IS *is, DM *subdm)
2129: {
2130: PetscFunctionBegin;
2132: PetscAssertPointer(fields, 3);
2133: if (is) PetscAssertPointer(is, 4);
2134: if (subdm) PetscAssertPointer(subdm, 5);
2135: PetscUseTypeMethod(dm, createsubdm, numFields, fields, is, subdm);
2136: PetscFunctionReturn(PETSC_SUCCESS);
2137: }
2139: /*@C
2140: DMCreateSuperDM - Returns an arrays of `IS` and a single `DM` encapsulating a superproblem defined by multiple `DM`s passed in.
2142: Not collective
2144: Input Parameters:
2145: + dms - The `DM` objects
2146: - n - The number of `DM`s
2148: Output Parameters:
2149: + is - The global indices for each of subproblem within the super `DM`, or `NULL`, its length is `n`
2150: - superdm - The `DM` for the superproblem
2152: Level: intermediate
2154: Note:
2155: You need to call `DMPlexSetMigrationSF()` on the original `DM` if you want the Global-To-Natural map to be automatically constructed
2157: .seealso: [](ch_dmbase), `DM`, `DMCreateSubDM()`, `DMPlexSetMigrationSF()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMCreateFieldIS()`, `DMCreateDomainDecomposition()`
2158: @*/
2159: PetscErrorCode DMCreateSuperDM(DM dms[], PetscInt n, IS *is[], DM *superdm)
2160: {
2161: PetscInt i;
2163: PetscFunctionBegin;
2164: PetscAssertPointer(dms, 1);
2166: if (is) PetscAssertPointer(is, 3);
2167: PetscAssertPointer(superdm, 4);
2168: PetscCheck(n >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of DMs must be nonnegative: %" PetscInt_FMT, n);
2169: if (n) {
2170: DM dm = dms[0];
2171: PetscCheck(dm->ops->createsuperdm, PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "No method createsuperdm for DM of type %s", ((PetscObject)dm)->type_name);
2172: PetscCall((*dm->ops->createsuperdm)(dms, n, is, superdm));
2173: }
2174: PetscFunctionReturn(PETSC_SUCCESS);
2175: }
2177: /*@C
2178: DMCreateDomainDecomposition - Returns lists of `IS` objects defining a decomposition of a
2179: problem into subproblems corresponding to restrictions to pairs of nested subdomains.
2181: Not Collective
2183: Input Parameter:
2184: . dm - the `DM` object
2186: Output Parameters:
2187: + n - The number of subproblems in the domain decomposition (or `NULL` if not requested), also the length of the four arrays below
2188: . namelist - The name for each subdomain (or `NULL` if not requested)
2189: . innerislist - The global indices for each inner subdomain (or `NULL`, if not requested)
2190: . outerislist - The global indices for each outer subdomain (or `NULL`, if not requested)
2191: - dmlist - The `DM`s for each subdomain subproblem (or `NULL`, if not requested; if `NULL` is returned, no `DM`s are defined)
2193: Level: intermediate
2195: Notes:
2196: Each `IS` contains the global indices of the dofs of the corresponding subdomains with in the
2197: dofs of the original `DM`. The inner subdomains conceptually define a nonoverlapping
2198: covering, while outer subdomains can overlap.
2200: The optional list of `DM`s define a `DM` for each subproblem.
2202: The user is responsible for freeing all requested arrays. In particular, every entry of `namelist` should be freed with
2203: `PetscFree()`, every entry of `innerislist` and `outerislist` should be destroyed with `ISDestroy()`, every entry of `dmlist` should be destroyed with `DMDestroy()`,
2204: and all of the arrays should be freed with `PetscFree()`.
2206: Developer Notes:
2207: The `dmlist` is for the inner subdomains or the outer subdomains or all subdomains?
2209: The names are inconsistent, the hooks use `DMSubDomainHook` which is nothing like `DMCreateDomainDecomposition()` while `DMRefineHook` is used for `DMRefine()`.
2211: .seealso: [](ch_dmbase), `DM`, `DMCreateFieldDecomposition()`, `DMDestroy()`, `DMCreateDomainDecompositionScatters()`, `DMView()`, `DMCreateInterpolation()`,
2212: `DMSubDomainHookAdd()`, `DMSubDomainHookRemove()`,`DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMRefine()`, `DMCoarsen()`
2213: @*/
2214: PetscErrorCode DMCreateDomainDecomposition(DM dm, PetscInt *n, char ***namelist, IS *innerislist[], IS *outerislist[], DM *dmlist[])
2215: {
2216: DMSubDomainHookLink link;
2217: PetscInt i, l;
2219: PetscFunctionBegin;
2221: if (n) {
2222: PetscAssertPointer(n, 2);
2223: *n = 0;
2224: }
2225: if (namelist) {
2226: PetscAssertPointer(namelist, 3);
2227: *namelist = NULL;
2228: }
2229: if (innerislist) {
2230: PetscAssertPointer(innerislist, 4);
2231: *innerislist = NULL;
2232: }
2233: if (outerislist) {
2234: PetscAssertPointer(outerislist, 5);
2235: *outerislist = NULL;
2236: }
2237: if (dmlist) {
2238: PetscAssertPointer(dmlist, 6);
2239: *dmlist = NULL;
2240: }
2241: /*
2242: Is it a good idea to apply the following check across all impls?
2243: Perhaps some impls can have a well-defined decomposition before DMSetUp?
2244: This, however, follows the general principle that accessors are not well-behaved until the object is set up.
2245: */
2246: PetscCheck(dm->setupcalled, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "Decomposition defined only after DMSetUp");
2247: if (dm->ops->createdomaindecomposition) {
2248: PetscUseTypeMethod(dm, createdomaindecomposition, &l, namelist, innerislist, outerislist, dmlist);
2249: /* copy subdomain hooks and context over to the subdomain DMs */
2250: if (dmlist && *dmlist) {
2251: for (i = 0; i < l; i++) {
2252: for (link = dm->subdomainhook; link; link = link->next) {
2253: if (link->ddhook) PetscCall((*link->ddhook)(dm, (*dmlist)[i], link->ctx));
2254: }
2255: if (dm->ctx) (*dmlist)[i]->ctx = dm->ctx;
2256: }
2257: }
2258: if (n) *n = l;
2259: }
2260: PetscFunctionReturn(PETSC_SUCCESS);
2261: }
2263: /*@C
2264: DMCreateDomainDecompositionScatters - Returns scatters to the subdomain vectors from the global vector for subdomains created with
2265: `DMCreateDomainDecomposition()`
2267: Not Collective
2269: Input Parameters:
2270: + dm - the `DM` object
2271: . n - the number of subdomains
2272: - subdms - the local subdomains
2274: Output Parameters:
2275: + iscat - scatter from global vector to nonoverlapping global vector entries on subdomain
2276: . oscat - scatter from global vector to overlapping global vector entries on subdomain
2277: - gscat - scatter from global vector to local vector on subdomain (fills in ghosts)
2279: Level: developer
2281: Note:
2282: This is an alternative to the iis and ois arguments in `DMCreateDomainDecomposition()` that allow for the solution
2283: of general nonlinear problems with overlapping subdomain methods. While merely having index sets that enable subsets
2284: of the residual equations to be created is fine for linear problems, nonlinear problems require local assembly of
2285: solution and residual data.
2287: Developer Note:
2288: Can the subdms input be anything or are they exactly the `DM` obtained from
2289: `DMCreateDomainDecomposition()`?
2291: .seealso: [](ch_dmbase), `DM`, `DMCreateDomainDecomposition()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMCreateFieldIS()`
2292: @*/
2293: PetscErrorCode DMCreateDomainDecompositionScatters(DM dm, PetscInt n, DM *subdms, VecScatter *iscat[], VecScatter *oscat[], VecScatter *gscat[])
2294: {
2295: PetscFunctionBegin;
2297: PetscAssertPointer(subdms, 3);
2298: PetscUseTypeMethod(dm, createddscatters, n, subdms, iscat, oscat, gscat);
2299: PetscFunctionReturn(PETSC_SUCCESS);
2300: }
2302: /*@
2303: DMRefine - Refines a `DM` object using a standard nonadaptive refinement of the underlying mesh
2305: Collective
2307: Input Parameters:
2308: + dm - the `DM` object
2309: - comm - the communicator to contain the new `DM` object (or `MPI_COMM_NULL`)
2311: Output Parameter:
2312: . dmf - the refined `DM`, or `NULL`
2314: Options Database Key:
2315: . -dm_plex_cell_refiner <strategy> - chooses the refinement strategy, e.g. regular, tohex
2317: Level: developer
2319: Note:
2320: If no refinement was done, the return value is `NULL`
2322: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateDomainDecomposition()`,
2323: `DMRefineHookAdd()`, `DMRefineHookRemove()`
2324: @*/
2325: PetscErrorCode DMRefine(DM dm, MPI_Comm comm, DM *dmf)
2326: {
2327: DMRefineHookLink link;
2329: PetscFunctionBegin;
2331: PetscCall(PetscLogEventBegin(DM_Refine, dm, 0, 0, 0));
2332: PetscUseTypeMethod(dm, refine, comm, dmf);
2333: if (*dmf) {
2334: (*dmf)->ops->creatematrix = dm->ops->creatematrix;
2336: PetscCall(PetscObjectCopyFortranFunctionPointers((PetscObject)dm, (PetscObject)*dmf));
2338: (*dmf)->ctx = dm->ctx;
2339: (*dmf)->leveldown = dm->leveldown;
2340: (*dmf)->levelup = dm->levelup + 1;
2342: PetscCall(DMSetMatType(*dmf, dm->mattype));
2343: for (link = dm->refinehook; link; link = link->next) {
2344: if (link->refinehook) PetscCall((*link->refinehook)(dm, *dmf, link->ctx));
2345: }
2346: }
2347: PetscCall(PetscLogEventEnd(DM_Refine, dm, 0, 0, 0));
2348: PetscFunctionReturn(PETSC_SUCCESS);
2349: }
2351: /*@C
2352: DMRefineHookAdd - adds a callback to be run when interpolating a nonlinear problem to a finer grid
2354: Logically Collective; No Fortran Support
2356: Input Parameters:
2357: + coarse - `DM` on which to run a hook when interpolating to a finer level
2358: . refinehook - function to run when setting up the finer level
2359: . interphook - function to run to update data on finer levels (once per `SNESSolve()`)
2360: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
2362: Calling sequence of `refinehook`:
2363: + coarse - coarse level `DM`
2364: . fine - fine level `DM` to interpolate problem to
2365: - ctx - optional user-defined function context
2367: Calling sequence of `interphook`:
2368: + coarse - coarse level `DM`
2369: . interp - matrix interpolating a coarse-level solution to the finer grid
2370: . fine - fine level `DM` to update
2371: - ctx - optional user-defined function context
2373: Level: advanced
2375: Notes:
2376: This function is only needed if auxiliary data that is attached to the `DM`s via, for example, `PetscObjectCompose()`, needs to be
2377: passed to fine grids while grid sequencing.
2379: The actual interpolation is done when `DMInterpolate()` is called.
2381: If this function is called multiple times, the hooks will be run in the order they are added.
2383: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookAdd()`, `DMInterpolate()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
2384: @*/
2385: PetscErrorCode DMRefineHookAdd(DM coarse, PetscErrorCode (*refinehook)(DM coarse, DM fine, void *ctx), PetscErrorCode (*interphook)(DM coarse, Mat interp, DM fine, void *ctx), void *ctx)
2386: {
2387: DMRefineHookLink link, *p;
2389: PetscFunctionBegin;
2391: for (p = &coarse->refinehook; *p; p = &(*p)->next) { /* Scan to the end of the current list of hooks */
2392: if ((*p)->refinehook == refinehook && (*p)->interphook == interphook && (*p)->ctx == ctx) PetscFunctionReturn(PETSC_SUCCESS);
2393: }
2394: PetscCall(PetscNew(&link));
2395: link->refinehook = refinehook;
2396: link->interphook = interphook;
2397: link->ctx = ctx;
2398: link->next = NULL;
2399: *p = link;
2400: PetscFunctionReturn(PETSC_SUCCESS);
2401: }
2403: /*@C
2404: DMRefineHookRemove - remove a callback from the list of hooks, that have been set with `DMRefineHookAdd()`, to be run when interpolating
2405: a nonlinear problem to a finer grid
2407: Logically Collective; No Fortran Support
2409: Input Parameters:
2410: + coarse - the `DM` on which to run a hook when restricting to a coarser level
2411: . refinehook - function to run when setting up a finer level
2412: . interphook - function to run to update data on finer levels
2413: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
2415: Level: advanced
2417: Note:
2418: This function does nothing if the hook is not in the list.
2420: .seealso: [](ch_dmbase), `DM`, `DMRefineHookAdd()`, `DMCoarsenHookRemove()`, `DMInterpolate()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
2421: @*/
2422: PetscErrorCode DMRefineHookRemove(DM coarse, PetscErrorCode (*refinehook)(DM, DM, void *), PetscErrorCode (*interphook)(DM, Mat, DM, void *), void *ctx)
2423: {
2424: DMRefineHookLink link, *p;
2426: PetscFunctionBegin;
2428: for (p = &coarse->refinehook; *p; p = &(*p)->next) { /* Search the list of current hooks */
2429: if ((*p)->refinehook == refinehook && (*p)->interphook == interphook && (*p)->ctx == ctx) {
2430: link = *p;
2431: *p = link->next;
2432: PetscCall(PetscFree(link));
2433: break;
2434: }
2435: }
2436: PetscFunctionReturn(PETSC_SUCCESS);
2437: }
2439: /*@
2440: DMInterpolate - interpolates user-defined problem data attached to a `DM` to a finer `DM` by running hooks registered by `DMRefineHookAdd()`
2442: Collective if any hooks are
2444: Input Parameters:
2445: + coarse - coarser `DM` to use as a base
2446: . interp - interpolation matrix, apply using `MatInterpolate()`
2447: - fine - finer `DM` to update
2449: Level: developer
2451: Developer Note:
2452: This routine is called `DMInterpolate()` while the hook is called `DMRefineHookAdd()`. It would be better to have an
2453: an API with consistent terminology.
2455: .seealso: [](ch_dmbase), `DM`, `DMRefineHookAdd()`, `MatInterpolate()`
2456: @*/
2457: PetscErrorCode DMInterpolate(DM coarse, Mat interp, DM fine)
2458: {
2459: DMRefineHookLink link;
2461: PetscFunctionBegin;
2462: for (link = fine->refinehook; link; link = link->next) {
2463: if (link->interphook) PetscCall((*link->interphook)(coarse, interp, fine, link->ctx));
2464: }
2465: PetscFunctionReturn(PETSC_SUCCESS);
2466: }
2468: /*@
2469: DMInterpolateSolution - Interpolates a solution from a coarse mesh to a fine mesh.
2471: Collective
2473: Input Parameters:
2474: + coarse - coarse `DM`
2475: . fine - fine `DM`
2476: . interp - (optional) the matrix computed by `DMCreateInterpolation()`. Implementations may not need this, but if it
2477: is available it can avoid some recomputation. If it is provided, `MatInterpolate()` will be used if
2478: the coarse `DM` does not have a specialized implementation.
2479: - coarseSol - solution on the coarse mesh
2481: Output Parameter:
2482: . fineSol - the interpolation of coarseSol to the fine mesh
2484: Level: developer
2486: Note:
2487: This function exists because the interpolation of a solution vector between meshes is not always a linear
2488: map. For example, if a boundary value problem has an inhomogeneous Dirichlet boundary condition that is compressed
2489: out of the solution vector. Or if interpolation is inherently a nonlinear operation, such as a method using
2490: slope-limiting reconstruction.
2492: Developer Note:
2493: This doesn't just interpolate "solutions" so its API name is questionable.
2495: .seealso: [](ch_dmbase), `DM`, `DMInterpolate()`, `DMCreateInterpolation()`
2496: @*/
2497: PetscErrorCode DMInterpolateSolution(DM coarse, DM fine, Mat interp, Vec coarseSol, Vec fineSol)
2498: {
2499: PetscErrorCode (*interpsol)(DM, DM, Mat, Vec, Vec) = NULL;
2501: PetscFunctionBegin;
2507: PetscCall(PetscObjectQueryFunction((PetscObject)coarse, "DMInterpolateSolution_C", &interpsol));
2508: if (interpsol) {
2509: PetscCall((*interpsol)(coarse, fine, interp, coarseSol, fineSol));
2510: } else if (interp) {
2511: PetscCall(MatInterpolate(interp, coarseSol, fineSol));
2512: } else SETERRQ(PetscObjectComm((PetscObject)coarse), PETSC_ERR_SUP, "DM %s does not implement DMInterpolateSolution()", ((PetscObject)coarse)->type_name);
2513: PetscFunctionReturn(PETSC_SUCCESS);
2514: }
2516: /*@
2517: DMGetRefineLevel - Gets the number of refinements that have generated this `DM` from some initial `DM`.
2519: Not Collective
2521: Input Parameter:
2522: . dm - the `DM` object
2524: Output Parameter:
2525: . level - number of refinements
2527: Level: developer
2529: Note:
2530: This can be used, by example, to set the number of coarser levels associated with this `DM` for a multigrid solver.
2532: .seealso: [](ch_dmbase), `DM`, `DMRefine()`, `DMCoarsen()`, `DMGetCoarsenLevel()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
2533: @*/
2534: PetscErrorCode DMGetRefineLevel(DM dm, PetscInt *level)
2535: {
2536: PetscFunctionBegin;
2538: *level = dm->levelup;
2539: PetscFunctionReturn(PETSC_SUCCESS);
2540: }
2542: /*@
2543: DMSetRefineLevel - Sets the number of refinements that have generated this `DM`.
2545: Not Collective
2547: Input Parameters:
2548: + dm - the `DM` object
2549: - level - number of refinements
2551: Level: advanced
2553: Notes:
2554: This value is used by `PCMG` to determine how many multigrid levels to use
2556: The values are usually set automatically by the process that is causing the refinements of an initial `DM` by calling this routine.
2558: .seealso: [](ch_dmbase), `DM`, `DMGetRefineLevel()`, `DMCoarsen()`, `DMGetCoarsenLevel()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
2559: @*/
2560: PetscErrorCode DMSetRefineLevel(DM dm, PetscInt level)
2561: {
2562: PetscFunctionBegin;
2564: dm->levelup = level;
2565: PetscFunctionReturn(PETSC_SUCCESS);
2566: }
2568: /*@
2569: DMExtrude - Extrude a `DM` object from a surface
2571: Collective
2573: Input Parameters:
2574: + dm - the `DM` object
2575: - layers - the number of extruded cell layers
2577: Output Parameter:
2578: . dme - the extruded `DM`, or `NULL`
2580: Level: developer
2582: Note:
2583: If no extrusion was done, the return value is `NULL`
2585: .seealso: [](ch_dmbase), `DM`, `DMRefine()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`
2586: @*/
2587: PetscErrorCode DMExtrude(DM dm, PetscInt layers, DM *dme)
2588: {
2589: PetscFunctionBegin;
2591: PetscUseTypeMethod(dm, extrude, layers, dme);
2592: if (*dme) {
2593: (*dme)->ops->creatematrix = dm->ops->creatematrix;
2594: PetscCall(PetscObjectCopyFortranFunctionPointers((PetscObject)dm, (PetscObject)*dme));
2595: (*dme)->ctx = dm->ctx;
2596: PetscCall(DMSetMatType(*dme, dm->mattype));
2597: }
2598: PetscFunctionReturn(PETSC_SUCCESS);
2599: }
2601: PetscErrorCode DMGetBasisTransformDM_Internal(DM dm, DM *tdm)
2602: {
2603: PetscFunctionBegin;
2605: PetscAssertPointer(tdm, 2);
2606: *tdm = dm->transformDM;
2607: PetscFunctionReturn(PETSC_SUCCESS);
2608: }
2610: PetscErrorCode DMGetBasisTransformVec_Internal(DM dm, Vec *tv)
2611: {
2612: PetscFunctionBegin;
2614: PetscAssertPointer(tv, 2);
2615: *tv = dm->transform;
2616: PetscFunctionReturn(PETSC_SUCCESS);
2617: }
2619: /*@
2620: DMHasBasisTransform - Whether the `DM` employs a basis transformation from functions in global vectors to functions in local vectors
2622: Input Parameter:
2623: . dm - The `DM`
2625: Output Parameter:
2626: . flg - `PETSC_TRUE` if a basis transformation should be done
2628: Level: developer
2630: .seealso: [](ch_dmbase), `DM`, `DMPlexGlobalToLocalBasis()`, `DMPlexLocalToGlobalBasis()`, `DMPlexCreateBasisRotation()`
2631: @*/
2632: PetscErrorCode DMHasBasisTransform(DM dm, PetscBool *flg)
2633: {
2634: Vec tv;
2636: PetscFunctionBegin;
2638: PetscAssertPointer(flg, 2);
2639: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
2640: *flg = tv ? PETSC_TRUE : PETSC_FALSE;
2641: PetscFunctionReturn(PETSC_SUCCESS);
2642: }
2644: PetscErrorCode DMConstructBasisTransform_Internal(DM dm)
2645: {
2646: PetscSection s, ts;
2647: PetscScalar *ta;
2648: PetscInt cdim, pStart, pEnd, p, Nf, f, Nc, dof;
2650: PetscFunctionBegin;
2651: PetscCall(DMGetCoordinateDim(dm, &cdim));
2652: PetscCall(DMGetLocalSection(dm, &s));
2653: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
2654: PetscCall(PetscSectionGetNumFields(s, &Nf));
2655: PetscCall(DMClone(dm, &dm->transformDM));
2656: PetscCall(DMGetLocalSection(dm->transformDM, &ts));
2657: PetscCall(PetscSectionSetNumFields(ts, Nf));
2658: PetscCall(PetscSectionSetChart(ts, pStart, pEnd));
2659: for (f = 0; f < Nf; ++f) {
2660: PetscCall(PetscSectionGetFieldComponents(s, f, &Nc));
2661: /* We could start to label fields by their transformation properties */
2662: if (Nc != cdim) continue;
2663: for (p = pStart; p < pEnd; ++p) {
2664: PetscCall(PetscSectionGetFieldDof(s, p, f, &dof));
2665: if (!dof) continue;
2666: PetscCall(PetscSectionSetFieldDof(ts, p, f, PetscSqr(cdim)));
2667: PetscCall(PetscSectionAddDof(ts, p, PetscSqr(cdim)));
2668: }
2669: }
2670: PetscCall(PetscSectionSetUp(ts));
2671: PetscCall(DMCreateLocalVector(dm->transformDM, &dm->transform));
2672: PetscCall(VecGetArray(dm->transform, &ta));
2673: for (p = pStart; p < pEnd; ++p) {
2674: for (f = 0; f < Nf; ++f) {
2675: PetscCall(PetscSectionGetFieldDof(ts, p, f, &dof));
2676: if (dof) {
2677: PetscReal x[3] = {0.0, 0.0, 0.0};
2678: PetscScalar *tva;
2679: const PetscScalar *A;
2681: /* TODO Get quadrature point for this dual basis vector for coordinate */
2682: PetscCall((*dm->transformGetMatrix)(dm, x, PETSC_TRUE, &A, dm->transformCtx));
2683: PetscCall(DMPlexPointLocalFieldRef(dm->transformDM, p, f, ta, (void *)&tva));
2684: PetscCall(PetscArraycpy(tva, A, PetscSqr(cdim)));
2685: }
2686: }
2687: }
2688: PetscCall(VecRestoreArray(dm->transform, &ta));
2689: PetscFunctionReturn(PETSC_SUCCESS);
2690: }
2692: PetscErrorCode DMCopyTransform(DM dm, DM newdm)
2693: {
2694: PetscFunctionBegin;
2697: newdm->transformCtx = dm->transformCtx;
2698: newdm->transformSetUp = dm->transformSetUp;
2699: newdm->transformDestroy = NULL;
2700: newdm->transformGetMatrix = dm->transformGetMatrix;
2701: if (newdm->transformSetUp) PetscCall(DMConstructBasisTransform_Internal(newdm));
2702: PetscFunctionReturn(PETSC_SUCCESS);
2703: }
2705: /*@C
2706: DMGlobalToLocalHookAdd - adds a callback to be run when `DMGlobalToLocal()` is called
2708: Logically Collective
2710: Input Parameters:
2711: + dm - the `DM`
2712: . beginhook - function to run at the beginning of `DMGlobalToLocalBegin()`
2713: . endhook - function to run after `DMGlobalToLocalEnd()` has completed
2714: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
2716: Calling sequence of `beginhook`:
2717: + dm - global `DM`
2718: . g - global vector
2719: . mode - mode
2720: . l - local vector
2721: - ctx - optional user-defined function context
2723: Calling sequence of `endhook`:
2724: + dm - global `DM`
2725: . g - global vector
2726: . mode - mode
2727: . l - local vector
2728: - ctx - optional user-defined function context
2730: Level: advanced
2732: Note:
2733: The hook may be used to provide, for example, values that represent boundary conditions in the local vectors that do not exist on the global vector.
2735: .seealso: [](ch_dmbase), `DM`, `DMGlobalToLocal()`, `DMRefineHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
2736: @*/
2737: PetscErrorCode DMGlobalToLocalHookAdd(DM dm, PetscErrorCode (*beginhook)(DM dm, Vec g, InsertMode mode, Vec l, void *ctx), PetscErrorCode (*endhook)(DM dm, Vec g, InsertMode mode, Vec l, void *ctx), void *ctx)
2738: {
2739: DMGlobalToLocalHookLink link, *p;
2741: PetscFunctionBegin;
2743: for (p = &dm->gtolhook; *p; p = &(*p)->next) { } /* Scan to the end of the current list of hooks */
2744: PetscCall(PetscNew(&link));
2745: link->beginhook = beginhook;
2746: link->endhook = endhook;
2747: link->ctx = ctx;
2748: link->next = NULL;
2749: *p = link;
2750: PetscFunctionReturn(PETSC_SUCCESS);
2751: }
2753: static PetscErrorCode DMGlobalToLocalHook_Constraints(DM dm, Vec g, InsertMode mode, Vec l, void *ctx)
2754: {
2755: Mat cMat;
2756: Vec cVec, cBias;
2757: PetscSection section, cSec;
2758: PetscInt pStart, pEnd, p, dof;
2760: PetscFunctionBegin;
2761: (void)g;
2762: (void)ctx;
2764: PetscCall(DMGetDefaultConstraints(dm, &cSec, &cMat, &cBias));
2765: if (cMat && (mode == INSERT_VALUES || mode == INSERT_ALL_VALUES || mode == INSERT_BC_VALUES)) {
2766: PetscInt nRows;
2768: PetscCall(MatGetSize(cMat, &nRows, NULL));
2769: if (nRows <= 0) PetscFunctionReturn(PETSC_SUCCESS);
2770: PetscCall(DMGetLocalSection(dm, §ion));
2771: PetscCall(MatCreateVecs(cMat, NULL, &cVec));
2772: PetscCall(MatMult(cMat, l, cVec));
2773: if (cBias) PetscCall(VecAXPY(cVec, 1., cBias));
2774: PetscCall(PetscSectionGetChart(cSec, &pStart, &pEnd));
2775: for (p = pStart; p < pEnd; p++) {
2776: PetscCall(PetscSectionGetDof(cSec, p, &dof));
2777: if (dof) {
2778: PetscScalar *vals;
2779: PetscCall(VecGetValuesSection(cVec, cSec, p, &vals));
2780: PetscCall(VecSetValuesSection(l, section, p, vals, INSERT_ALL_VALUES));
2781: }
2782: }
2783: PetscCall(VecDestroy(&cVec));
2784: }
2785: PetscFunctionReturn(PETSC_SUCCESS);
2786: }
2788: /*@
2789: DMGlobalToLocal - update local vectors from global vector
2791: Neighbor-wise Collective
2793: Input Parameters:
2794: + dm - the `DM` object
2795: . g - the global vector
2796: . mode - `INSERT_VALUES` or `ADD_VALUES`
2797: - l - the local vector
2799: Level: beginner
2801: Notes:
2802: The communication involved in this update can be overlapped with computation by instead using
2803: `DMGlobalToLocalBegin()` and `DMGlobalToLocalEnd()`.
2805: `DMGlobalToLocalHookAdd()` may be used to provide additional operations that are performed during the update process.
2807: .seealso: [](ch_dmbase), `DM`, `DMGlobalToLocalHookAdd()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`,
2808: `DMGlobalToLocalEnd()`, `DMLocalToGlobalBegin()`, `DMLocalToGlobal()`, `DMLocalToGlobalEnd()`,
2809: `DMGlobalToLocalBegin()` `DMGlobalToLocalEnd()`
2810: @*/
2811: PetscErrorCode DMGlobalToLocal(DM dm, Vec g, InsertMode mode, Vec l)
2812: {
2813: PetscFunctionBegin;
2814: PetscCall(DMGlobalToLocalBegin(dm, g, mode, l));
2815: PetscCall(DMGlobalToLocalEnd(dm, g, mode, l));
2816: PetscFunctionReturn(PETSC_SUCCESS);
2817: }
2819: /*@
2820: DMGlobalToLocalBegin - Begins updating local vectors from global vector
2822: Neighbor-wise Collective
2824: Input Parameters:
2825: + dm - the `DM` object
2826: . g - the global vector
2827: . mode - `INSERT_VALUES` or `ADD_VALUES`
2828: - l - the local vector
2830: Level: intermediate
2832: Notes:
2833: The operation is completed with `DMGlobalToLocalEnd()`
2835: One can perform local computations between the `DMGlobalToLocalBegin()` and `DMGlobalToLocalEnd()` to overlap communication and computation
2837: `DMGlobalToLocal()` is a short form of `DMGlobalToLocalBegin()` and `DMGlobalToLocalEnd()`
2839: `DMGlobalToLocalHookAdd()` may be used to provide additional operations that are performed during the update process.
2841: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocal()`, `DMGlobalToLocalEnd()`, `DMLocalToGlobalBegin()`, `DMLocalToGlobal()`, `DMLocalToGlobalEnd()`
2842: @*/
2843: PetscErrorCode DMGlobalToLocalBegin(DM dm, Vec g, InsertMode mode, Vec l)
2844: {
2845: PetscSF sf;
2846: DMGlobalToLocalHookLink link;
2848: PetscFunctionBegin;
2850: for (link = dm->gtolhook; link; link = link->next) {
2851: if (link->beginhook) PetscCall((*link->beginhook)(dm, g, mode, l, link->ctx));
2852: }
2853: PetscCall(DMGetSectionSF(dm, &sf));
2854: if (sf) {
2855: const PetscScalar *gArray;
2856: PetscScalar *lArray;
2857: PetscMemType lmtype, gmtype;
2859: PetscCheck(mode != ADD_VALUES, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid insertion mode %d", (int)mode);
2860: PetscCall(VecGetArrayAndMemType(l, &lArray, &lmtype));
2861: PetscCall(VecGetArrayReadAndMemType(g, &gArray, &gmtype));
2862: PetscCall(PetscSFBcastWithMemTypeBegin(sf, MPIU_SCALAR, gmtype, gArray, lmtype, lArray, MPI_REPLACE));
2863: PetscCall(VecRestoreArrayAndMemType(l, &lArray));
2864: PetscCall(VecRestoreArrayReadAndMemType(g, &gArray));
2865: } else {
2866: PetscUseTypeMethod(dm, globaltolocalbegin, g, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), l);
2867: }
2868: PetscFunctionReturn(PETSC_SUCCESS);
2869: }
2871: /*@
2872: DMGlobalToLocalEnd - Ends updating local vectors from global vector
2874: Neighbor-wise Collective
2876: Input Parameters:
2877: + dm - the `DM` object
2878: . g - the global vector
2879: . mode - `INSERT_VALUES` or `ADD_VALUES`
2880: - l - the local vector
2882: Level: intermediate
2884: Note:
2885: See `DMGlobalToLocalBegin()` for details.
2887: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocal()`, `DMLocalToGlobalBegin()`, `DMLocalToGlobal()`, `DMLocalToGlobalEnd()`
2888: @*/
2889: PetscErrorCode DMGlobalToLocalEnd(DM dm, Vec g, InsertMode mode, Vec l)
2890: {
2891: PetscSF sf;
2892: const PetscScalar *gArray;
2893: PetscScalar *lArray;
2894: PetscBool transform;
2895: DMGlobalToLocalHookLink link;
2896: PetscMemType lmtype, gmtype;
2898: PetscFunctionBegin;
2900: PetscCall(DMGetSectionSF(dm, &sf));
2901: PetscCall(DMHasBasisTransform(dm, &transform));
2902: if (sf) {
2903: PetscCheck(mode != ADD_VALUES, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid insertion mode %d", (int)mode);
2905: PetscCall(VecGetArrayAndMemType(l, &lArray, &lmtype));
2906: PetscCall(VecGetArrayReadAndMemType(g, &gArray, &gmtype));
2907: PetscCall(PetscSFBcastEnd(sf, MPIU_SCALAR, gArray, lArray, MPI_REPLACE));
2908: PetscCall(VecRestoreArrayAndMemType(l, &lArray));
2909: PetscCall(VecRestoreArrayReadAndMemType(g, &gArray));
2910: if (transform) PetscCall(DMPlexGlobalToLocalBasis(dm, l));
2911: } else {
2912: PetscUseTypeMethod(dm, globaltolocalend, g, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), l);
2913: }
2914: PetscCall(DMGlobalToLocalHook_Constraints(dm, g, mode, l, NULL));
2915: for (link = dm->gtolhook; link; link = link->next) {
2916: if (link->endhook) PetscCall((*link->endhook)(dm, g, mode, l, link->ctx));
2917: }
2918: PetscFunctionReturn(PETSC_SUCCESS);
2919: }
2921: /*@C
2922: DMLocalToGlobalHookAdd - adds a callback to be run when a local to global is called
2924: Logically Collective
2926: Input Parameters:
2927: + dm - the `DM`
2928: . beginhook - function to run at the beginning of `DMLocalToGlobalBegin()`
2929: . endhook - function to run after `DMLocalToGlobalEnd()` has completed
2930: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
2932: Calling sequence of `beginhook`:
2933: + global - global `DM`
2934: . l - local vector
2935: . mode - mode
2936: . g - global vector
2937: - ctx - optional user-defined function context
2939: Calling sequence of `endhook`:
2940: + global - global `DM`
2941: . l - local vector
2942: . mode - mode
2943: . g - global vector
2944: - ctx - optional user-defined function context
2946: Level: advanced
2948: .seealso: [](ch_dmbase), `DM`, `DMLocalToGlobal()`, `DMRefineHookAdd()`, `DMGlobalToLocalHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
2949: @*/
2950: PetscErrorCode DMLocalToGlobalHookAdd(DM dm, PetscErrorCode (*beginhook)(DM global, Vec l, InsertMode mode, Vec g, void *ctx), PetscErrorCode (*endhook)(DM global, Vec l, InsertMode mode, Vec g, void *ctx), void *ctx)
2951: {
2952: DMLocalToGlobalHookLink link, *p;
2954: PetscFunctionBegin;
2956: for (p = &dm->ltoghook; *p; p = &(*p)->next) { } /* Scan to the end of the current list of hooks */
2957: PetscCall(PetscNew(&link));
2958: link->beginhook = beginhook;
2959: link->endhook = endhook;
2960: link->ctx = ctx;
2961: link->next = NULL;
2962: *p = link;
2963: PetscFunctionReturn(PETSC_SUCCESS);
2964: }
2966: static PetscErrorCode DMLocalToGlobalHook_Constraints(DM dm, Vec l, InsertMode mode, Vec g, void *ctx)
2967: {
2968: PetscFunctionBegin;
2969: (void)g;
2970: (void)ctx;
2972: if (mode == ADD_VALUES || mode == ADD_ALL_VALUES || mode == ADD_BC_VALUES) {
2973: Mat cMat;
2974: Vec cVec;
2975: PetscInt nRows;
2976: PetscSection section, cSec;
2977: PetscInt pStart, pEnd, p, dof;
2979: PetscCall(DMGetDefaultConstraints(dm, &cSec, &cMat, NULL));
2980: if (!cMat) PetscFunctionReturn(PETSC_SUCCESS);
2982: PetscCall(MatGetSize(cMat, &nRows, NULL));
2983: if (nRows <= 0) PetscFunctionReturn(PETSC_SUCCESS);
2984: PetscCall(DMGetLocalSection(dm, §ion));
2985: PetscCall(MatCreateVecs(cMat, NULL, &cVec));
2986: PetscCall(PetscSectionGetChart(cSec, &pStart, &pEnd));
2987: for (p = pStart; p < pEnd; p++) {
2988: PetscCall(PetscSectionGetDof(cSec, p, &dof));
2989: if (dof) {
2990: PetscInt d;
2991: PetscScalar *vals;
2992: PetscCall(VecGetValuesSection(l, section, p, &vals));
2993: PetscCall(VecSetValuesSection(cVec, cSec, p, vals, mode));
2994: /* for this to be the true transpose, we have to zero the values that
2995: * we just extracted */
2996: for (d = 0; d < dof; d++) vals[d] = 0.;
2997: }
2998: }
2999: PetscCall(MatMultTransposeAdd(cMat, cVec, l, l));
3000: PetscCall(VecDestroy(&cVec));
3001: }
3002: PetscFunctionReturn(PETSC_SUCCESS);
3003: }
3004: /*@
3005: DMLocalToGlobal - updates global vectors from local vectors
3007: Neighbor-wise Collective
3009: Input Parameters:
3010: + dm - the `DM` object
3011: . l - the local vector
3012: . mode - if `INSERT_VALUES` then no parallel communication is used, if `ADD_VALUES` then all ghost points from the same base point accumulate into that base point.
3013: - g - the global vector
3015: Level: beginner
3017: Notes:
3018: The communication involved in this update can be overlapped with computation by using
3019: `DMLocalToGlobalBegin()` and `DMLocalToGlobalEnd()`.
3021: In the `ADD_VALUES` case you normally would zero the receiving vector before beginning this operation.
3023: `INSERT_VALUES` is not supported for `DMDA`; in that case simply compute the values directly into a global vector instead of a local one.
3025: Use `DMLocalToGlobalHookAdd()` to add additional operations that are performed on the data during the update process
3027: .seealso: [](ch_dmbase), `DM`, `DMLocalToGlobalBegin()`, `DMLocalToGlobalEnd()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocal()`, `DMGlobalToLocalEnd()`, `DMGlobalToLocalBegin()`, `DMLocalToGlobalHookAdd()`, `DMGlobaToLocallHookAdd()`
3028: @*/
3029: PetscErrorCode DMLocalToGlobal(DM dm, Vec l, InsertMode mode, Vec g)
3030: {
3031: PetscFunctionBegin;
3032: PetscCall(DMLocalToGlobalBegin(dm, l, mode, g));
3033: PetscCall(DMLocalToGlobalEnd(dm, l, mode, g));
3034: PetscFunctionReturn(PETSC_SUCCESS);
3035: }
3037: /*@
3038: DMLocalToGlobalBegin - begins updating global vectors from local vectors
3040: Neighbor-wise Collective
3042: Input Parameters:
3043: + dm - the `DM` object
3044: . l - the local vector
3045: . mode - if `INSERT_VALUES` then no parallel communication is used, if `ADD_VALUES` then all ghost points from the same base point accumulate into that base point.
3046: - g - the global vector
3048: Level: intermediate
3050: Notes:
3051: In the `ADD_VALUES` case you normally would zero the receiving vector before beginning this operation.
3053: `INSERT_VALUES is` not supported for `DMDA`, in that case simply compute the values directly into a global vector instead of a local one.
3055: Use `DMLocalToGlobalEnd()` to complete the communication process.
3057: `DMLocalToGlobal()` is a short form of `DMLocalToGlobalBegin()` and `DMLocalToGlobalEnd()`
3059: `DMLocalToGlobalHookAdd()` may be used to provide additional operations that are performed during the update process.
3061: .seealso: [](ch_dmbase), `DM`, `DMLocalToGlobal()`, `DMLocalToGlobalEnd()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocal()`, `DMGlobalToLocalEnd()`, `DMGlobalToLocalBegin()`
3062: @*/
3063: PetscErrorCode DMLocalToGlobalBegin(DM dm, Vec l, InsertMode mode, Vec g)
3064: {
3065: PetscSF sf;
3066: PetscSection s, gs;
3067: DMLocalToGlobalHookLink link;
3068: Vec tmpl;
3069: const PetscScalar *lArray;
3070: PetscScalar *gArray;
3071: PetscBool isInsert, transform, l_inplace = PETSC_FALSE, g_inplace = PETSC_FALSE;
3072: PetscMemType lmtype = PETSC_MEMTYPE_HOST, gmtype = PETSC_MEMTYPE_HOST;
3074: PetscFunctionBegin;
3076: for (link = dm->ltoghook; link; link = link->next) {
3077: if (link->beginhook) PetscCall((*link->beginhook)(dm, l, mode, g, link->ctx));
3078: }
3079: PetscCall(DMLocalToGlobalHook_Constraints(dm, l, mode, g, NULL));
3080: PetscCall(DMGetSectionSF(dm, &sf));
3081: PetscCall(DMGetLocalSection(dm, &s));
3082: switch (mode) {
3083: case INSERT_VALUES:
3084: case INSERT_ALL_VALUES:
3085: case INSERT_BC_VALUES:
3086: isInsert = PETSC_TRUE;
3087: break;
3088: case ADD_VALUES:
3089: case ADD_ALL_VALUES:
3090: case ADD_BC_VALUES:
3091: isInsert = PETSC_FALSE;
3092: break;
3093: default:
3094: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid insertion mode %d", mode);
3095: }
3096: if ((sf && !isInsert) || (s && isInsert)) {
3097: PetscCall(DMHasBasisTransform(dm, &transform));
3098: if (transform) {
3099: PetscCall(DMGetNamedLocalVector(dm, "__petsc_dm_transform_local_copy", &tmpl));
3100: PetscCall(VecCopy(l, tmpl));
3101: PetscCall(DMPlexLocalToGlobalBasis(dm, tmpl));
3102: PetscCall(VecGetArrayRead(tmpl, &lArray));
3103: } else if (isInsert) {
3104: PetscCall(VecGetArrayRead(l, &lArray));
3105: } else {
3106: PetscCall(VecGetArrayReadAndMemType(l, &lArray, &lmtype));
3107: l_inplace = PETSC_TRUE;
3108: }
3109: if (s && isInsert) {
3110: PetscCall(VecGetArray(g, &gArray));
3111: } else {
3112: PetscCall(VecGetArrayAndMemType(g, &gArray, &gmtype));
3113: g_inplace = PETSC_TRUE;
3114: }
3115: if (sf && !isInsert) {
3116: PetscCall(PetscSFReduceWithMemTypeBegin(sf, MPIU_SCALAR, lmtype, lArray, gmtype, gArray, MPIU_SUM));
3117: } else if (s && isInsert) {
3118: PetscInt gStart, pStart, pEnd, p;
3120: PetscCall(DMGetGlobalSection(dm, &gs));
3121: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
3122: PetscCall(VecGetOwnershipRange(g, &gStart, NULL));
3123: for (p = pStart; p < pEnd; ++p) {
3124: PetscInt dof, gdof, cdof, gcdof, off, goff, d, e;
3126: PetscCall(PetscSectionGetDof(s, p, &dof));
3127: PetscCall(PetscSectionGetDof(gs, p, &gdof));
3128: PetscCall(PetscSectionGetConstraintDof(s, p, &cdof));
3129: PetscCall(PetscSectionGetConstraintDof(gs, p, &gcdof));
3130: PetscCall(PetscSectionGetOffset(s, p, &off));
3131: PetscCall(PetscSectionGetOffset(gs, p, &goff));
3132: /* Ignore off-process data and points with no global data */
3133: if (!gdof || goff < 0) continue;
3134: PetscCheck(dof == gdof, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Inconsistent sizes, p: %" PetscInt_FMT " dof: %" PetscInt_FMT " gdof: %" PetscInt_FMT " cdof: %" PetscInt_FMT " gcdof: %" PetscInt_FMT, p, dof, gdof, cdof, gcdof);
3135: /* If no constraints are enforced in the global vector */
3136: if (!gcdof) {
3137: for (d = 0; d < dof; ++d) gArray[goff - gStart + d] = lArray[off + d];
3138: /* If constraints are enforced in the global vector */
3139: } else if (cdof == gcdof) {
3140: const PetscInt *cdofs;
3141: PetscInt cind = 0;
3143: PetscCall(PetscSectionGetConstraintIndices(s, p, &cdofs));
3144: for (d = 0, e = 0; d < dof; ++d) {
3145: if ((cind < cdof) && (d == cdofs[cind])) {
3146: ++cind;
3147: continue;
3148: }
3149: gArray[goff - gStart + e++] = lArray[off + d];
3150: }
3151: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Inconsistent sizes, p: %" PetscInt_FMT " dof: %" PetscInt_FMT " gdof: %" PetscInt_FMT " cdof: %" PetscInt_FMT " gcdof: %" PetscInt_FMT, p, dof, gdof, cdof, gcdof);
3152: }
3153: }
3154: if (g_inplace) {
3155: PetscCall(VecRestoreArrayAndMemType(g, &gArray));
3156: } else {
3157: PetscCall(VecRestoreArray(g, &gArray));
3158: }
3159: if (transform) {
3160: PetscCall(VecRestoreArrayRead(tmpl, &lArray));
3161: PetscCall(DMRestoreNamedLocalVector(dm, "__petsc_dm_transform_local_copy", &tmpl));
3162: } else if (l_inplace) {
3163: PetscCall(VecRestoreArrayReadAndMemType(l, &lArray));
3164: } else {
3165: PetscCall(VecRestoreArrayRead(l, &lArray));
3166: }
3167: } else {
3168: PetscUseTypeMethod(dm, localtoglobalbegin, l, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), g);
3169: }
3170: PetscFunctionReturn(PETSC_SUCCESS);
3171: }
3173: /*@
3174: DMLocalToGlobalEnd - updates global vectors from local vectors
3176: Neighbor-wise Collective
3178: Input Parameters:
3179: + dm - the `DM` object
3180: . l - the local vector
3181: . mode - `INSERT_VALUES` or `ADD_VALUES`
3182: - g - the global vector
3184: Level: intermediate
3186: Note:
3187: See `DMLocalToGlobalBegin()` for full details
3189: .seealso: [](ch_dmbase), `DM`, `DMLocalToGlobalBegin()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocalEnd()`
3190: @*/
3191: PetscErrorCode DMLocalToGlobalEnd(DM dm, Vec l, InsertMode mode, Vec g)
3192: {
3193: PetscSF sf;
3194: PetscSection s;
3195: DMLocalToGlobalHookLink link;
3196: PetscBool isInsert, transform;
3198: PetscFunctionBegin;
3200: PetscCall(DMGetSectionSF(dm, &sf));
3201: PetscCall(DMGetLocalSection(dm, &s));
3202: switch (mode) {
3203: case INSERT_VALUES:
3204: case INSERT_ALL_VALUES:
3205: isInsert = PETSC_TRUE;
3206: break;
3207: case ADD_VALUES:
3208: case ADD_ALL_VALUES:
3209: isInsert = PETSC_FALSE;
3210: break;
3211: default:
3212: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid insertion mode %d", mode);
3213: }
3214: if (sf && !isInsert) {
3215: const PetscScalar *lArray;
3216: PetscScalar *gArray;
3217: Vec tmpl;
3219: PetscCall(DMHasBasisTransform(dm, &transform));
3220: if (transform) {
3221: PetscCall(DMGetNamedLocalVector(dm, "__petsc_dm_transform_local_copy", &tmpl));
3222: PetscCall(VecGetArrayRead(tmpl, &lArray));
3223: } else {
3224: PetscCall(VecGetArrayReadAndMemType(l, &lArray, NULL));
3225: }
3226: PetscCall(VecGetArrayAndMemType(g, &gArray, NULL));
3227: PetscCall(PetscSFReduceEnd(sf, MPIU_SCALAR, lArray, gArray, MPIU_SUM));
3228: if (transform) {
3229: PetscCall(VecRestoreArrayRead(tmpl, &lArray));
3230: PetscCall(DMRestoreNamedLocalVector(dm, "__petsc_dm_transform_local_copy", &tmpl));
3231: } else {
3232: PetscCall(VecRestoreArrayReadAndMemType(l, &lArray));
3233: }
3234: PetscCall(VecRestoreArrayAndMemType(g, &gArray));
3235: } else if (s && isInsert) {
3236: } else {
3237: PetscUseTypeMethod(dm, localtoglobalend, l, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), g);
3238: }
3239: for (link = dm->ltoghook; link; link = link->next) {
3240: if (link->endhook) PetscCall((*link->endhook)(dm, g, mode, l, link->ctx));
3241: }
3242: PetscFunctionReturn(PETSC_SUCCESS);
3243: }
3245: /*@
3246: DMLocalToLocalBegin - Begins the process of mapping values from a local vector (that include
3247: ghost points that contain irrelevant values) to another local vector where the ghost points
3248: in the second are set correctly from values on other MPI ranks.
3250: Neighbor-wise Collective
3252: Input Parameters:
3253: + dm - the `DM` object
3254: . g - the original local vector
3255: - mode - one of `INSERT_VALUES` or `ADD_VALUES`
3257: Output Parameter:
3258: . l - the local vector with correct ghost values
3260: Level: intermediate
3262: Note:
3263: Must be followed by `DMLocalToLocalEnd()`.
3265: .seealso: [](ch_dmbase), `DM`, `DMLocalToLocalEnd()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateLocalVector()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocalEnd()`, `DMLocalToGlobalBegin()`
3266: @*/
3267: PetscErrorCode DMLocalToLocalBegin(DM dm, Vec g, InsertMode mode, Vec l)
3268: {
3269: PetscFunctionBegin;
3273: PetscUseTypeMethod(dm, localtolocalbegin, g, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), l);
3274: PetscFunctionReturn(PETSC_SUCCESS);
3275: }
3277: /*@
3278: DMLocalToLocalEnd - Maps from a local vector to another local vector where the ghost
3279: points in the second are set correctly. Must be preceded by `DMLocalToLocalBegin()`.
3281: Neighbor-wise Collective
3283: Input Parameters:
3284: + dm - the `DM` object
3285: . g - the original local vector
3286: - mode - one of `INSERT_VALUES` or `ADD_VALUES`
3288: Output Parameter:
3289: . l - the local vector with correct ghost values
3291: Level: intermediate
3293: .seealso: [](ch_dmbase), `DM`, `DMLocalToLocalBegin()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateLocalVector()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocalEnd()`, `DMLocalToGlobalBegin()`
3294: @*/
3295: PetscErrorCode DMLocalToLocalEnd(DM dm, Vec g, InsertMode mode, Vec l)
3296: {
3297: PetscFunctionBegin;
3301: PetscUseTypeMethod(dm, localtolocalend, g, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), l);
3302: PetscFunctionReturn(PETSC_SUCCESS);
3303: }
3305: /*@
3306: DMCoarsen - Coarsens a `DM` object using a standard, non-adaptive coarsening of the underlying mesh
3308: Collective
3310: Input Parameters:
3311: + dm - the `DM` object
3312: - comm - the communicator to contain the new `DM` object (or `MPI_COMM_NULL`)
3314: Output Parameter:
3315: . dmc - the coarsened `DM`
3317: Level: developer
3319: .seealso: [](ch_dmbase), `DM`, `DMRefine()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateDomainDecomposition()`,
3320: `DMCoarsenHookAdd()`, `DMCoarsenHookRemove()`
3321: @*/
3322: PetscErrorCode DMCoarsen(DM dm, MPI_Comm comm, DM *dmc)
3323: {
3324: DMCoarsenHookLink link;
3326: PetscFunctionBegin;
3328: PetscCall(PetscLogEventBegin(DM_Coarsen, dm, 0, 0, 0));
3329: PetscUseTypeMethod(dm, coarsen, comm, dmc);
3330: if (*dmc) {
3331: (*dmc)->bind_below = dm->bind_below; /* Propagate this from parent DM; otherwise -dm_bind_below will be useless for multigrid cases. */
3332: PetscCall(DMSetCoarseDM(dm, *dmc));
3333: (*dmc)->ops->creatematrix = dm->ops->creatematrix;
3334: PetscCall(PetscObjectCopyFortranFunctionPointers((PetscObject)dm, (PetscObject)*dmc));
3335: (*dmc)->ctx = dm->ctx;
3336: (*dmc)->levelup = dm->levelup;
3337: (*dmc)->leveldown = dm->leveldown + 1;
3338: PetscCall(DMSetMatType(*dmc, dm->mattype));
3339: for (link = dm->coarsenhook; link; link = link->next) {
3340: if (link->coarsenhook) PetscCall((*link->coarsenhook)(dm, *dmc, link->ctx));
3341: }
3342: }
3343: PetscCall(PetscLogEventEnd(DM_Coarsen, dm, 0, 0, 0));
3344: PetscCheck(*dmc, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "NULL coarse mesh produced");
3345: PetscFunctionReturn(PETSC_SUCCESS);
3346: }
3348: /*@C
3349: DMCoarsenHookAdd - adds a callback to be run when restricting a nonlinear problem to the coarse grid
3351: Logically Collective; No Fortran Support
3353: Input Parameters:
3354: + fine - `DM` on which to run a hook when restricting to a coarser level
3355: . coarsenhook - function to run when setting up a coarser level
3356: . restricthook - function to run to update data on coarser levels (called once per `SNESSolve()`)
3357: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
3359: Calling sequence of `coarsenhook`:
3360: + fine - fine level `DM`
3361: . coarse - coarse level `DM` to restrict problem to
3362: - ctx - optional user-defined function context
3364: Calling sequence of `restricthook`:
3365: + fine - fine level `DM`
3366: . mrestrict - matrix restricting a fine-level solution to the coarse grid, usually the transpose of the interpolation
3367: . rscale - scaling vector for restriction
3368: . inject - matrix restricting by injection
3369: . coarse - coarse level DM to update
3370: - ctx - optional user-defined function context
3372: Level: advanced
3374: Notes:
3375: This function is only needed if auxiliary data, attached to the `DM` with `PetscObjectCompose()`, needs to be set up or passed from the fine `DM` to the coarse `DM`.
3377: If this function is called multiple times, the hooks will be run in the order they are added.
3379: In order to compose with nonlinear preconditioning without duplicating storage, the hook should be implemented to
3380: extract the finest level information from its context (instead of from the `SNES`).
3382: The hooks are automatically called by `DMRestrict()`
3384: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookRemove()`, `DMRefineHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
3385: @*/
3386: PetscErrorCode DMCoarsenHookAdd(DM fine, PetscErrorCode (*coarsenhook)(DM fine, DM coarse, void *ctx), PetscErrorCode (*restricthook)(DM fine, Mat mrestrict, Vec rscale, Mat inject, DM coarse, void *ctx), void *ctx)
3387: {
3388: DMCoarsenHookLink link, *p;
3390: PetscFunctionBegin;
3392: for (p = &fine->coarsenhook; *p; p = &(*p)->next) { /* Scan to the end of the current list of hooks */
3393: if ((*p)->coarsenhook == coarsenhook && (*p)->restricthook == restricthook && (*p)->ctx == ctx) PetscFunctionReturn(PETSC_SUCCESS);
3394: }
3395: PetscCall(PetscNew(&link));
3396: link->coarsenhook = coarsenhook;
3397: link->restricthook = restricthook;
3398: link->ctx = ctx;
3399: link->next = NULL;
3400: *p = link;
3401: PetscFunctionReturn(PETSC_SUCCESS);
3402: }
3404: /*@C
3405: DMCoarsenHookRemove - remove a callback set with `DMCoarsenHookAdd()`
3407: Logically Collective; No Fortran Support
3409: Input Parameters:
3410: + fine - `DM` on which to run a hook when restricting to a coarser level
3411: . coarsenhook - function to run when setting up a coarser level
3412: . restricthook - function to run to update data on coarser levels
3413: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
3415: Level: advanced
3417: Notes:
3418: This function does nothing if the `coarsenhook` is not in the list.
3420: See `DMCoarsenHookAdd()` for the calling sequence of `coarsenhook` and `restricthook`
3422: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookAdd()`, `DMRefineHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
3423: @*/
3424: PetscErrorCode DMCoarsenHookRemove(DM fine, PetscErrorCode (*coarsenhook)(DM, DM, void *), PetscErrorCode (*restricthook)(DM, Mat, Vec, Mat, DM, void *), void *ctx)
3425: {
3426: DMCoarsenHookLink link, *p;
3428: PetscFunctionBegin;
3430: for (p = &fine->coarsenhook; *p; p = &(*p)->next) { /* Search the list of current hooks */
3431: if ((*p)->coarsenhook == coarsenhook && (*p)->restricthook == restricthook && (*p)->ctx == ctx) {
3432: link = *p;
3433: *p = link->next;
3434: PetscCall(PetscFree(link));
3435: break;
3436: }
3437: }
3438: PetscFunctionReturn(PETSC_SUCCESS);
3439: }
3441: /*@
3442: DMRestrict - restricts user-defined problem data to a coarser `DM` by running hooks registered by `DMCoarsenHookAdd()`
3444: Collective if any hooks are
3446: Input Parameters:
3447: + fine - finer `DM` from which the data is obtained
3448: . restrct - restriction matrix, apply using `MatRestrict()`, usually the transpose of the interpolation
3449: . rscale - scaling vector for restriction
3450: . inject - injection matrix, also use `MatRestrict()`
3451: - coarse - coarser `DM` to update
3453: Level: developer
3455: Developer Note:
3456: Though this routine is called `DMRestrict()` the hooks are added with `DMCoarsenHookAdd()`, a consistent terminology would be better
3458: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookAdd()`, `MatRestrict()`, `DMInterpolate()`, `DMRefineHookAdd()`
3459: @*/
3460: PetscErrorCode DMRestrict(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse)
3461: {
3462: DMCoarsenHookLink link;
3464: PetscFunctionBegin;
3465: for (link = fine->coarsenhook; link; link = link->next) {
3466: if (link->restricthook) PetscCall((*link->restricthook)(fine, restrct, rscale, inject, coarse, link->ctx));
3467: }
3468: PetscFunctionReturn(PETSC_SUCCESS);
3469: }
3471: /*@C
3472: DMSubDomainHookAdd - adds a callback to be run when restricting a problem to subdomain `DM`s with `DMCreateDomainDecomposition()`
3474: Logically Collective; No Fortran Support
3476: Input Parameters:
3477: + global - global `DM`
3478: . ddhook - function to run to pass data to the decomposition `DM` upon its creation
3479: . restricthook - function to run to update data on block solve (at the beginning of the block solve)
3480: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
3482: Calling sequence of `ddhook`:
3483: + global - global `DM`
3484: . block - subdomain `DM`
3485: - ctx - optional user-defined function context
3487: Calling sequence of `restricthook`:
3488: + global - global `DM`
3489: . out - scatter to the outer (with ghost and overlap points) sub vector
3490: . in - scatter to sub vector values only owned locally
3491: . block - subdomain `DM`
3492: - ctx - optional user-defined function context
3494: Level: advanced
3496: Notes:
3497: This function can be used if auxiliary data needs to be set up on subdomain `DM`s.
3499: If this function is called multiple times, the hooks will be run in the order they are added.
3501: In order to compose with nonlinear preconditioning without duplicating storage, the hook should be implemented to
3502: extract the global information from its context (instead of from the `SNES`).
3504: Developer Note:
3505: It is unclear what "block solve" means within the definition of `restricthook`
3507: .seealso: [](ch_dmbase), `DM`, `DMSubDomainHookRemove()`, `DMRefineHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`, `DMCreateDomainDecomposition()`
3508: @*/
3509: PetscErrorCode DMSubDomainHookAdd(DM global, PetscErrorCode (*ddhook)(DM global, DM block, void *ctx), PetscErrorCode (*restricthook)(DM global, VecScatter out, VecScatter in, DM block, void *ctx), void *ctx)
3510: {
3511: DMSubDomainHookLink link, *p;
3513: PetscFunctionBegin;
3515: for (p = &global->subdomainhook; *p; p = &(*p)->next) { /* Scan to the end of the current list of hooks */
3516: if ((*p)->ddhook == ddhook && (*p)->restricthook == restricthook && (*p)->ctx == ctx) PetscFunctionReturn(PETSC_SUCCESS);
3517: }
3518: PetscCall(PetscNew(&link));
3519: link->restricthook = restricthook;
3520: link->ddhook = ddhook;
3521: link->ctx = ctx;
3522: link->next = NULL;
3523: *p = link;
3524: PetscFunctionReturn(PETSC_SUCCESS);
3525: }
3527: /*@C
3528: DMSubDomainHookRemove - remove a callback from the list to be run when restricting a problem to subdomain `DM`s with `DMCreateDomainDecomposition()`
3530: Logically Collective; No Fortran Support
3532: Input Parameters:
3533: + global - global `DM`
3534: . ddhook - function to run to pass data to the decomposition `DM` upon its creation
3535: . restricthook - function to run to update data on block solve (at the beginning of the block solve)
3536: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
3538: Level: advanced
3540: Note:
3541: See `DMSubDomainHookAdd()` for the calling sequences of `ddhook` and `restricthook`
3543: .seealso: [](ch_dmbase), `DM`, `DMSubDomainHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`,
3544: `DMCreateDomainDecomposition()`
3545: @*/
3546: PetscErrorCode DMSubDomainHookRemove(DM global, PetscErrorCode (*ddhook)(DM, DM, void *), PetscErrorCode (*restricthook)(DM, VecScatter, VecScatter, DM, void *), void *ctx)
3547: {
3548: DMSubDomainHookLink link, *p;
3550: PetscFunctionBegin;
3552: for (p = &global->subdomainhook; *p; p = &(*p)->next) { /* Search the list of current hooks */
3553: if ((*p)->ddhook == ddhook && (*p)->restricthook == restricthook && (*p)->ctx == ctx) {
3554: link = *p;
3555: *p = link->next;
3556: PetscCall(PetscFree(link));
3557: break;
3558: }
3559: }
3560: PetscFunctionReturn(PETSC_SUCCESS);
3561: }
3563: /*@
3564: DMSubDomainRestrict - restricts user-defined problem data to a subdomain `DM` by running hooks registered by `DMSubDomainHookAdd()`
3566: Collective if any hooks are
3568: Input Parameters:
3569: + global - The global `DM` to use as a base
3570: . oscatter - The scatter from domain global vector filling subdomain global vector with overlap
3571: . gscatter - The scatter from domain global vector filling subdomain local vector with ghosts
3572: - subdm - The subdomain `DM` to update
3574: Level: developer
3576: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookAdd()`, `MatRestrict()`, `DMCreateDomainDecomposition()`
3577: @*/
3578: PetscErrorCode DMSubDomainRestrict(DM global, VecScatter oscatter, VecScatter gscatter, DM subdm)
3579: {
3580: DMSubDomainHookLink link;
3582: PetscFunctionBegin;
3583: for (link = global->subdomainhook; link; link = link->next) {
3584: if (link->restricthook) PetscCall((*link->restricthook)(global, oscatter, gscatter, subdm, link->ctx));
3585: }
3586: PetscFunctionReturn(PETSC_SUCCESS);
3587: }
3589: /*@
3590: DMGetCoarsenLevel - Gets the number of coarsenings that have generated this `DM`.
3592: Not Collective
3594: Input Parameter:
3595: . dm - the `DM` object
3597: Output Parameter:
3598: . level - number of coarsenings
3600: Level: developer
3602: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMSetCoarsenLevel()`, `DMGetRefineLevel()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
3603: @*/
3604: PetscErrorCode DMGetCoarsenLevel(DM dm, PetscInt *level)
3605: {
3606: PetscFunctionBegin;
3608: PetscAssertPointer(level, 2);
3609: *level = dm->leveldown;
3610: PetscFunctionReturn(PETSC_SUCCESS);
3611: }
3613: /*@
3614: DMSetCoarsenLevel - Sets the number of coarsenings that have generated this `DM`.
3616: Collective
3618: Input Parameters:
3619: + dm - the `DM` object
3620: - level - number of coarsenings
3622: Level: developer
3624: Note:
3625: This is rarely used directly, the information is automatically set when a `DM` is created with `DMCoarsen()`
3627: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMGetCoarsenLevel()`, `DMGetRefineLevel()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
3628: @*/
3629: PetscErrorCode DMSetCoarsenLevel(DM dm, PetscInt level)
3630: {
3631: PetscFunctionBegin;
3633: dm->leveldown = level;
3634: PetscFunctionReturn(PETSC_SUCCESS);
3635: }
3637: /*@
3638: DMRefineHierarchy - Refines a `DM` object, all levels at once
3640: Collective
3642: Input Parameters:
3643: + dm - the `DM` object
3644: - nlevels - the number of levels of refinement
3646: Output Parameter:
3647: . dmf - the refined `DM` hierarchy
3649: Level: developer
3651: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMCoarsenHierarchy()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
3652: @*/
3653: PetscErrorCode DMRefineHierarchy(DM dm, PetscInt nlevels, DM dmf[])
3654: {
3655: PetscFunctionBegin;
3657: PetscCheck(nlevels >= 0, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "nlevels cannot be negative");
3658: if (nlevels == 0) PetscFunctionReturn(PETSC_SUCCESS);
3659: PetscAssertPointer(dmf, 3);
3660: if (dm->ops->refine && !dm->ops->refinehierarchy) {
3661: PetscInt i;
3663: PetscCall(DMRefine(dm, PetscObjectComm((PetscObject)dm), &dmf[0]));
3664: for (i = 1; i < nlevels; i++) PetscCall(DMRefine(dmf[i - 1], PetscObjectComm((PetscObject)dm), &dmf[i]));
3665: } else PetscUseTypeMethod(dm, refinehierarchy, nlevels, dmf);
3666: PetscFunctionReturn(PETSC_SUCCESS);
3667: }
3669: /*@
3670: DMCoarsenHierarchy - Coarsens a `DM` object, all levels at once
3672: Collective
3674: Input Parameters:
3675: + dm - the `DM` object
3676: - nlevels - the number of levels of coarsening
3678: Output Parameter:
3679: . dmc - the coarsened `DM` hierarchy
3681: Level: developer
3683: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMRefineHierarchy()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
3684: @*/
3685: PetscErrorCode DMCoarsenHierarchy(DM dm, PetscInt nlevels, DM dmc[])
3686: {
3687: PetscFunctionBegin;
3689: PetscCheck(nlevels >= 0, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "nlevels cannot be negative");
3690: if (nlevels == 0) PetscFunctionReturn(PETSC_SUCCESS);
3691: PetscAssertPointer(dmc, 3);
3692: if (dm->ops->coarsen && !dm->ops->coarsenhierarchy) {
3693: PetscInt i;
3695: PetscCall(DMCoarsen(dm, PetscObjectComm((PetscObject)dm), &dmc[0]));
3696: for (i = 1; i < nlevels; i++) PetscCall(DMCoarsen(dmc[i - 1], PetscObjectComm((PetscObject)dm), &dmc[i]));
3697: } else PetscUseTypeMethod(dm, coarsenhierarchy, nlevels, dmc);
3698: PetscFunctionReturn(PETSC_SUCCESS);
3699: }
3701: /*@C
3702: DMSetApplicationContextDestroy - Sets a user function that will be called to destroy the application context when the `DM` is destroyed
3704: Logically Collective if the function is collective
3706: Input Parameters:
3707: + dm - the `DM` object
3708: - destroy - the destroy function, see `PetscCtxDestroyFn` for the calling sequence
3710: Level: intermediate
3712: .seealso: [](ch_dmbase), `DM`, `DMSetApplicationContext()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`,
3713: `DMGetApplicationContext()`, `PetscCtxDestroyFn`
3714: @*/
3715: PetscErrorCode DMSetApplicationContextDestroy(DM dm, PetscCtxDestroyFn *destroy)
3716: {
3717: PetscFunctionBegin;
3719: dm->ctxdestroy = destroy;
3720: PetscFunctionReturn(PETSC_SUCCESS);
3721: }
3723: /*@
3724: DMSetApplicationContext - Set a user context into a `DM` object
3726: Not Collective
3728: Input Parameters:
3729: + dm - the `DM` object
3730: - ctx - the user context
3732: Level: intermediate
3734: Note:
3735: A user context is a way to pass problem specific information that is accessible whenever the `DM` is available
3736: In a multilevel solver, the user context is shared by all the `DM` in the hierarchy; it is thus not advisable
3737: to store objects that represent discretized quantities inside the context.
3739: Fortran Note:
3740: This only works when `ctx` is a Fortran derived type (it cannot be a `PetscObject`), we recommend writing a Fortran interface definition for this
3741: function that tells the Fortran compiler the derived data type that is passed in as the `ctx` argument. See `DMGetApplicationContext()` for
3742: an example.
3744: .seealso: [](ch_dmbase), `DM`, `DMGetApplicationContext()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`
3745: @*/
3746: PetscErrorCode DMSetApplicationContext(DM dm, void *ctx)
3747: {
3748: PetscFunctionBegin;
3750: dm->ctx = ctx;
3751: PetscFunctionReturn(PETSC_SUCCESS);
3752: }
3754: /*@
3755: DMGetApplicationContext - Gets a user context from a `DM` object provided with `DMSetApplicationContext()`
3757: Not Collective
3759: Input Parameter:
3760: . dm - the `DM` object
3762: Output Parameter:
3763: . ctx - a pointer to the user context
3765: Level: intermediate
3767: Note:
3768: A user context is a way to pass problem specific information that is accessible whenever the `DM` is available
3770: Fortran Notes:
3771: This only works when the context is a Fortran derived type (it cannot be a `PetscObject`) and you **must** write a Fortran interface definition for this
3772: function that tells the Fortran compiler the derived data type that is returned as the `ctx` argument. For example,
3773: .vb
3774: Interface DMGetApplicationContext
3775: Subroutine DMGetApplicationContext(dm,ctx,ierr)
3776: #include <petsc/finclude/petscdm.h>
3777: use petscdm
3778: DM dm
3779: type(tUsertype), pointer :: ctx
3780: PetscErrorCode ierr
3781: End Subroutine
3782: End Interface DMGetApplicationContext
3783: .ve
3785: The prototpye for `ctx` must be
3786: .vb
3787: type(tUsertype), pointer :: ctx
3788: .ve
3790: .seealso: [](ch_dmbase), `DM`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`
3791: @*/
3792: PetscErrorCode DMGetApplicationContext(DM dm, PeCtx ctx)
3793: {
3794: PetscFunctionBegin;
3796: *(void **)ctx = dm->ctx;
3797: PetscFunctionReturn(PETSC_SUCCESS);
3798: }
3800: /*@C
3801: DMSetVariableBounds - sets a function to compute the lower and upper bound vectors for `SNESVI`.
3803: Logically Collective
3805: Input Parameters:
3806: + dm - the DM object
3807: - f - the function that computes variable bounds used by `SNESVI` (use `NULL` to cancel a previous function that was set)
3809: Level: intermediate
3811: Developer Note:
3812: Should be called `DMSetComputeVIBounds()` or something similar
3814: .seealso: [](ch_dmbase), `DM`, `DMComputeVariableBounds()`, `DMHasVariableBounds()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMGetApplicationContext()`,
3815: `DMSetJacobian()`
3816: @*/
3817: PetscErrorCode DMSetVariableBounds(DM dm, PetscErrorCode (*f)(DM, Vec, Vec))
3818: {
3819: PetscFunctionBegin;
3821: dm->ops->computevariablebounds = f;
3822: PetscFunctionReturn(PETSC_SUCCESS);
3823: }
3825: /*@
3826: DMHasVariableBounds - does the `DM` object have a variable bounds function?
3828: Not Collective
3830: Input Parameter:
3831: . dm - the `DM` object to destroy
3833: Output Parameter:
3834: . flg - `PETSC_TRUE` if the variable bounds function exists
3836: Level: developer
3838: .seealso: [](ch_dmbase), `DM`, `DMComputeVariableBounds()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMGetApplicationContext()`
3839: @*/
3840: PetscErrorCode DMHasVariableBounds(DM dm, PetscBool *flg)
3841: {
3842: PetscFunctionBegin;
3844: PetscAssertPointer(flg, 2);
3845: *flg = (dm->ops->computevariablebounds) ? PETSC_TRUE : PETSC_FALSE;
3846: PetscFunctionReturn(PETSC_SUCCESS);
3847: }
3849: /*@
3850: DMComputeVariableBounds - compute variable bounds used by `SNESVI`.
3852: Logically Collective
3854: Input Parameter:
3855: . dm - the `DM` object
3857: Output Parameters:
3858: + xl - lower bound
3859: - xu - upper bound
3861: Level: advanced
3863: Note:
3864: This is generally not called by users. It calls the function provided by the user with DMSetVariableBounds()
3866: .seealso: [](ch_dmbase), `DM`, `DMHasVariableBounds()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMGetApplicationContext()`
3867: @*/
3868: PetscErrorCode DMComputeVariableBounds(DM dm, Vec xl, Vec xu)
3869: {
3870: PetscFunctionBegin;
3874: PetscUseTypeMethod(dm, computevariablebounds, xl, xu);
3875: PetscFunctionReturn(PETSC_SUCCESS);
3876: }
3878: /*@
3879: DMHasColoring - does the `DM` object have a method of providing a coloring?
3881: Not Collective
3883: Input Parameter:
3884: . dm - the DM object
3886: Output Parameter:
3887: . flg - `PETSC_TRUE` if the `DM` has facilities for `DMCreateColoring()`.
3889: Level: developer
3891: .seealso: [](ch_dmbase), `DM`, `DMCreateColoring()`
3892: @*/
3893: PetscErrorCode DMHasColoring(DM dm, PetscBool *flg)
3894: {
3895: PetscFunctionBegin;
3897: PetscAssertPointer(flg, 2);
3898: *flg = (dm->ops->getcoloring) ? PETSC_TRUE : PETSC_FALSE;
3899: PetscFunctionReturn(PETSC_SUCCESS);
3900: }
3902: /*@
3903: DMHasCreateRestriction - does the `DM` object have a method of providing a restriction?
3905: Not Collective
3907: Input Parameter:
3908: . dm - the `DM` object
3910: Output Parameter:
3911: . flg - `PETSC_TRUE` if the `DM` has facilities for `DMCreateRestriction()`.
3913: Level: developer
3915: .seealso: [](ch_dmbase), `DM`, `DMCreateRestriction()`, `DMHasCreateInterpolation()`, `DMHasCreateInjection()`
3916: @*/
3917: PetscErrorCode DMHasCreateRestriction(DM dm, PetscBool *flg)
3918: {
3919: PetscFunctionBegin;
3921: PetscAssertPointer(flg, 2);
3922: *flg = (dm->ops->createrestriction) ? PETSC_TRUE : PETSC_FALSE;
3923: PetscFunctionReturn(PETSC_SUCCESS);
3924: }
3926: /*@
3927: DMHasCreateInjection - does the `DM` object have a method of providing an injection?
3929: Not Collective
3931: Input Parameter:
3932: . dm - the `DM` object
3934: Output Parameter:
3935: . flg - `PETSC_TRUE` if the `DM` has facilities for `DMCreateInjection()`.
3937: Level: developer
3939: .seealso: [](ch_dmbase), `DM`, `DMCreateInjection()`, `DMHasCreateRestriction()`, `DMHasCreateInterpolation()`
3940: @*/
3941: PetscErrorCode DMHasCreateInjection(DM dm, PetscBool *flg)
3942: {
3943: PetscFunctionBegin;
3945: PetscAssertPointer(flg, 2);
3946: if (dm->ops->hascreateinjection) PetscUseTypeMethod(dm, hascreateinjection, flg);
3947: else *flg = (dm->ops->createinjection) ? PETSC_TRUE : PETSC_FALSE;
3948: PetscFunctionReturn(PETSC_SUCCESS);
3949: }
3951: PetscFunctionList DMList = NULL;
3952: PetscBool DMRegisterAllCalled = PETSC_FALSE;
3954: /*@
3955: DMSetType - Builds a `DM`, for a particular `DM` implementation.
3957: Collective
3959: Input Parameters:
3960: + dm - The `DM` object
3961: - method - The name of the `DMType`, for example `DMDA`, `DMPLEX`
3963: Options Database Key:
3964: . -dm_type <type> - Sets the `DM` type; use -help for a list of available types
3966: Level: intermediate
3968: Note:
3969: Of the `DM` is constructed by directly calling a function to construct a particular `DM`, for example, `DMDACreate2d()` or `DMPlexCreateBoxMesh()`
3971: .seealso: [](ch_dmbase), `DM`, `DMType`, `DMDA`, `DMPLEX`, `DMGetType()`, `DMCreate()`, `DMDACreate2d()`
3972: @*/
3973: PetscErrorCode DMSetType(DM dm, DMType method)
3974: {
3975: PetscErrorCode (*r)(DM);
3976: PetscBool match;
3978: PetscFunctionBegin;
3980: PetscCall(PetscObjectTypeCompare((PetscObject)dm, method, &match));
3981: if (match) PetscFunctionReturn(PETSC_SUCCESS);
3983: PetscCall(DMRegisterAll());
3984: PetscCall(PetscFunctionListFind(DMList, method, &r));
3985: PetscCheck(r, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown DM type: %s", method);
3987: PetscTryTypeMethod(dm, destroy);
3988: PetscCall(PetscMemzero(dm->ops, sizeof(*dm->ops)));
3989: PetscCall(PetscObjectChangeTypeName((PetscObject)dm, method));
3990: PetscCall((*r)(dm));
3991: PetscFunctionReturn(PETSC_SUCCESS);
3992: }
3994: /*@
3995: DMGetType - Gets the `DM` type name (as a string) from the `DM`.
3997: Not Collective
3999: Input Parameter:
4000: . dm - The `DM`
4002: Output Parameter:
4003: . type - The `DMType` name
4005: Level: intermediate
4007: .seealso: [](ch_dmbase), `DM`, `DMType`, `DMDA`, `DMPLEX`, `DMSetType()`, `DMCreate()`
4008: @*/
4009: PetscErrorCode DMGetType(DM dm, DMType *type)
4010: {
4011: PetscFunctionBegin;
4013: PetscAssertPointer(type, 2);
4014: PetscCall(DMRegisterAll());
4015: *type = ((PetscObject)dm)->type_name;
4016: PetscFunctionReturn(PETSC_SUCCESS);
4017: }
4019: /*@
4020: DMConvert - Converts a `DM` to another `DM`, either of the same or different type.
4022: Collective
4024: Input Parameters:
4025: + dm - the `DM`
4026: - newtype - new `DM` type (use "same" for the same type)
4028: Output Parameter:
4029: . M - pointer to new `DM`
4031: Level: intermediate
4033: Note:
4034: Cannot be used to convert a sequential `DM` to a parallel or a parallel to sequential,
4035: the MPI communicator of the generated `DM` is always the same as the communicator
4036: of the input `DM`.
4038: .seealso: [](ch_dmbase), `DM`, `DMSetType()`, `DMCreate()`, `DMClone()`
4039: @*/
4040: PetscErrorCode DMConvert(DM dm, DMType newtype, DM *M)
4041: {
4042: DM B;
4043: char convname[256];
4044: PetscBool sametype /*, issame */;
4046: PetscFunctionBegin;
4049: PetscAssertPointer(M, 3);
4050: PetscCall(PetscObjectTypeCompare((PetscObject)dm, newtype, &sametype));
4051: /* PetscCall(PetscStrcmp(newtype, "same", &issame)); */
4052: if (sametype) {
4053: *M = dm;
4054: PetscCall(PetscObjectReference((PetscObject)dm));
4055: PetscFunctionReturn(PETSC_SUCCESS);
4056: } else {
4057: PetscErrorCode (*conv)(DM, DMType, DM *) = NULL;
4059: /*
4060: Order of precedence:
4061: 1) See if a specialized converter is known to the current DM.
4062: 2) See if a specialized converter is known to the desired DM class.
4063: 3) See if a good general converter is registered for the desired class
4064: 4) See if a good general converter is known for the current matrix.
4065: 5) Use a really basic converter.
4066: */
4068: /* 1) See if a specialized converter is known to the current DM and the desired class */
4069: PetscCall(PetscStrncpy(convname, "DMConvert_", sizeof(convname)));
4070: PetscCall(PetscStrlcat(convname, ((PetscObject)dm)->type_name, sizeof(convname)));
4071: PetscCall(PetscStrlcat(convname, "_", sizeof(convname)));
4072: PetscCall(PetscStrlcat(convname, newtype, sizeof(convname)));
4073: PetscCall(PetscStrlcat(convname, "_C", sizeof(convname)));
4074: PetscCall(PetscObjectQueryFunction((PetscObject)dm, convname, &conv));
4075: if (conv) goto foundconv;
4077: /* 2) See if a specialized converter is known to the desired DM class. */
4078: PetscCall(DMCreate(PetscObjectComm((PetscObject)dm), &B));
4079: PetscCall(DMSetType(B, newtype));
4080: PetscCall(PetscStrncpy(convname, "DMConvert_", sizeof(convname)));
4081: PetscCall(PetscStrlcat(convname, ((PetscObject)dm)->type_name, sizeof(convname)));
4082: PetscCall(PetscStrlcat(convname, "_", sizeof(convname)));
4083: PetscCall(PetscStrlcat(convname, newtype, sizeof(convname)));
4084: PetscCall(PetscStrlcat(convname, "_C", sizeof(convname)));
4085: PetscCall(PetscObjectQueryFunction((PetscObject)B, convname, &conv));
4086: if (conv) {
4087: PetscCall(DMDestroy(&B));
4088: goto foundconv;
4089: }
4091: #if 0
4092: /* 3) See if a good general converter is registered for the desired class */
4093: conv = B->ops->convertfrom;
4094: PetscCall(DMDestroy(&B));
4095: if (conv) goto foundconv;
4097: /* 4) See if a good general converter is known for the current matrix */
4098: if (dm->ops->convert) {
4099: conv = dm->ops->convert;
4100: }
4101: if (conv) goto foundconv;
4102: #endif
4104: /* 5) Use a really basic converter. */
4105: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "No conversion possible between DM types %s and %s", ((PetscObject)dm)->type_name, newtype);
4107: foundconv:
4108: PetscCall(PetscLogEventBegin(DM_Convert, dm, 0, 0, 0));
4109: PetscCall((*conv)(dm, newtype, M));
4110: /* Things that are independent of DM type: We should consult DMClone() here */
4111: {
4112: const PetscReal *maxCell, *Lstart, *L;
4114: PetscCall(DMGetPeriodicity(dm, &maxCell, &Lstart, &L));
4115: PetscCall(DMSetPeriodicity(*M, maxCell, Lstart, L));
4116: (*M)->prealloc_only = dm->prealloc_only;
4117: PetscCall(PetscFree((*M)->vectype));
4118: PetscCall(PetscStrallocpy(dm->vectype, (char **)&(*M)->vectype));
4119: PetscCall(PetscFree((*M)->mattype));
4120: PetscCall(PetscStrallocpy(dm->mattype, (char **)&(*M)->mattype));
4121: }
4122: PetscCall(PetscLogEventEnd(DM_Convert, dm, 0, 0, 0));
4123: }
4124: PetscCall(PetscObjectStateIncrease((PetscObject)*M));
4125: PetscFunctionReturn(PETSC_SUCCESS);
4126: }
4128: /*@C
4129: DMRegister - Adds a new `DM` type implementation
4131: Not Collective, No Fortran Support
4133: Input Parameters:
4134: + sname - The name of a new user-defined creation routine
4135: - function - The creation routine itself
4137: Level: advanced
4139: Note:
4140: `DMRegister()` may be called multiple times to add several user-defined `DM`s
4142: Example Usage:
4143: .vb
4144: DMRegister("my_da", MyDMCreate);
4145: .ve
4147: Then, your `DM` type can be chosen with the procedural interface via
4148: .vb
4149: DMCreate(MPI_Comm, DM *);
4150: DMSetType(DM,"my_da");
4151: .ve
4152: or at runtime via the option
4153: .vb
4154: -da_type my_da
4155: .ve
4157: .seealso: [](ch_dmbase), `DM`, `DMType`, `DMSetType()`, `DMRegisterAll()`, `DMRegisterDestroy()`
4158: @*/
4159: PetscErrorCode DMRegister(const char sname[], PetscErrorCode (*function)(DM))
4160: {
4161: PetscFunctionBegin;
4162: PetscCall(DMInitializePackage());
4163: PetscCall(PetscFunctionListAdd(&DMList, sname, function));
4164: PetscFunctionReturn(PETSC_SUCCESS);
4165: }
4167: /*@
4168: DMLoad - Loads a DM that has been stored in binary with `DMView()`.
4170: Collective
4172: Input Parameters:
4173: + newdm - the newly loaded `DM`, this needs to have been created with `DMCreate()` or
4174: some related function before a call to `DMLoad()`.
4175: - viewer - binary file viewer, obtained from `PetscViewerBinaryOpen()` or
4176: `PETSCVIEWERHDF5` file viewer, obtained from `PetscViewerHDF5Open()`
4178: Level: intermediate
4180: Notes:
4181: The type is determined by the data in the file, any type set into the DM before this call is ignored.
4183: Using `PETSCVIEWERHDF5` type with `PETSC_VIEWER_HDF5_PETSC` format, one can save multiple `DMPLEX`
4184: meshes in a single HDF5 file. This in turn requires one to name the `DMPLEX` object with `PetscObjectSetName()`
4185: before saving it with `DMView()` and before loading it with `DMLoad()` for identification of the mesh object.
4187: .seealso: [](ch_dmbase), `DM`, `PetscViewerBinaryOpen()`, `DMView()`, `MatLoad()`, `VecLoad()`
4188: @*/
4189: PetscErrorCode DMLoad(DM newdm, PetscViewer viewer)
4190: {
4191: PetscBool isbinary, ishdf5;
4193: PetscFunctionBegin;
4196: PetscCall(PetscViewerCheckReadable(viewer));
4197: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
4198: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
4199: PetscCall(PetscLogEventBegin(DM_Load, viewer, 0, 0, 0));
4200: if (isbinary) {
4201: PetscInt classid;
4202: char type[256];
4204: PetscCall(PetscViewerBinaryRead(viewer, &classid, 1, NULL, PETSC_INT));
4205: PetscCheck(classid == DM_FILE_CLASSID, PetscObjectComm((PetscObject)newdm), PETSC_ERR_ARG_WRONG, "Not DM next in file, classid found %" PetscInt_FMT, classid);
4206: PetscCall(PetscViewerBinaryRead(viewer, type, 256, NULL, PETSC_CHAR));
4207: PetscCall(DMSetType(newdm, type));
4208: PetscTryTypeMethod(newdm, load, viewer);
4209: } else if (ishdf5) {
4210: PetscTryTypeMethod(newdm, load, viewer);
4211: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerBinaryOpen() or PetscViewerHDF5Open()");
4212: PetscCall(PetscLogEventEnd(DM_Load, viewer, 0, 0, 0));
4213: PetscFunctionReturn(PETSC_SUCCESS);
4214: }
4216: /* FEM Support */
4218: PetscErrorCode DMPrintCellIndices(PetscInt c, const char name[], PetscInt len, const PetscInt x[])
4219: {
4220: PetscInt f;
4222: PetscFunctionBegin;
4223: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Cell %" PetscInt_FMT " Element %s\n", c, name));
4224: for (f = 0; f < len; ++f) PetscCall(PetscPrintf(PETSC_COMM_SELF, " | %" PetscInt_FMT " |\n", x[f]));
4225: PetscFunctionReturn(PETSC_SUCCESS);
4226: }
4228: PetscErrorCode DMPrintCellVector(PetscInt c, const char name[], PetscInt len, const PetscScalar x[])
4229: {
4230: PetscInt f;
4232: PetscFunctionBegin;
4233: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Cell %" PetscInt_FMT " Element %s\n", c, name));
4234: for (f = 0; f < len; ++f) PetscCall(PetscPrintf(PETSC_COMM_SELF, " | %g |\n", (double)PetscRealPart(x[f])));
4235: PetscFunctionReturn(PETSC_SUCCESS);
4236: }
4238: PetscErrorCode DMPrintCellVectorReal(PetscInt c, const char name[], PetscInt len, const PetscReal x[])
4239: {
4240: PetscInt f;
4242: PetscFunctionBegin;
4243: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Cell %" PetscInt_FMT " Element %s\n", c, name));
4244: for (f = 0; f < len; ++f) PetscCall(PetscPrintf(PETSC_COMM_SELF, " | %g |\n", (double)x[f]));
4245: PetscFunctionReturn(PETSC_SUCCESS);
4246: }
4248: PetscErrorCode DMPrintCellMatrix(PetscInt c, const char name[], PetscInt rows, PetscInt cols, const PetscScalar A[])
4249: {
4250: PetscInt f, g;
4252: PetscFunctionBegin;
4253: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Cell %" PetscInt_FMT " Element %s\n", c, name));
4254: for (f = 0; f < rows; ++f) {
4255: PetscCall(PetscPrintf(PETSC_COMM_SELF, " |"));
4256: for (g = 0; g < cols; ++g) PetscCall(PetscPrintf(PETSC_COMM_SELF, " % 9.5g", (double)PetscRealPart(A[f * cols + g])));
4257: PetscCall(PetscPrintf(PETSC_COMM_SELF, " |\n"));
4258: }
4259: PetscFunctionReturn(PETSC_SUCCESS);
4260: }
4262: PetscErrorCode DMPrintLocalVec(DM dm, const char name[], PetscReal tol, Vec X)
4263: {
4264: PetscInt localSize, bs;
4265: PetscMPIInt size;
4266: Vec x, xglob;
4267: const PetscScalar *xarray;
4269: PetscFunctionBegin;
4270: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)dm), &size));
4271: PetscCall(VecDuplicate(X, &x));
4272: PetscCall(VecCopy(X, x));
4273: PetscCall(VecFilter(x, tol));
4274: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "%s:\n", name));
4275: if (size > 1) {
4276: PetscCall(VecGetLocalSize(x, &localSize));
4277: PetscCall(VecGetArrayRead(x, &xarray));
4278: PetscCall(VecGetBlockSize(x, &bs));
4279: PetscCall(VecCreateMPIWithArray(PetscObjectComm((PetscObject)dm), bs, localSize, PETSC_DETERMINE, xarray, &xglob));
4280: } else {
4281: xglob = x;
4282: }
4283: PetscCall(VecView(xglob, PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)dm))));
4284: if (size > 1) {
4285: PetscCall(VecDestroy(&xglob));
4286: PetscCall(VecRestoreArrayRead(x, &xarray));
4287: }
4288: PetscCall(VecDestroy(&x));
4289: PetscFunctionReturn(PETSC_SUCCESS);
4290: }
4292: /*@
4293: DMGetLocalSection - Get the `PetscSection` encoding the local data layout for the `DM`.
4295: Input Parameter:
4296: . dm - The `DM`
4298: Output Parameter:
4299: . section - The `PetscSection`
4301: Options Database Key:
4302: . -dm_petscsection_view - View the section created by the `DM`
4304: Level: intermediate
4306: Note:
4307: This gets a borrowed reference, so the user should not destroy this `PetscSection`.
4309: .seealso: [](ch_dmbase), `DM`, `DMSetLocalSection()`, `DMGetGlobalSection()`
4310: @*/
4311: PetscErrorCode DMGetLocalSection(DM dm, PetscSection *section)
4312: {
4313: PetscFunctionBegin;
4315: PetscAssertPointer(section, 2);
4316: if (!dm->localSection && dm->ops->createlocalsection) {
4317: PetscInt d;
4319: if (dm->setfromoptionscalled) {
4320: PetscObject obj = (PetscObject)dm;
4321: PetscViewer viewer;
4322: PetscViewerFormat format;
4323: PetscBool flg;
4325: PetscCall(PetscOptionsCreateViewer(PetscObjectComm(obj), obj->options, obj->prefix, "-dm_petscds_view", &viewer, &format, &flg));
4326: if (flg) PetscCall(PetscViewerPushFormat(viewer, format));
4327: for (d = 0; d < dm->Nds; ++d) {
4328: PetscCall(PetscDSSetFromOptions(dm->probs[d].ds));
4329: if (flg) PetscCall(PetscDSView(dm->probs[d].ds, viewer));
4330: }
4331: if (flg) {
4332: PetscCall(PetscViewerFlush(viewer));
4333: PetscCall(PetscViewerPopFormat(viewer));
4334: PetscCall(PetscViewerDestroy(&viewer));
4335: }
4336: }
4337: PetscUseTypeMethod(dm, createlocalsection);
4338: if (dm->localSection) PetscCall(PetscObjectViewFromOptions((PetscObject)dm->localSection, NULL, "-dm_petscsection_view"));
4339: }
4340: *section = dm->localSection;
4341: PetscFunctionReturn(PETSC_SUCCESS);
4342: }
4344: /*@
4345: DMSetLocalSection - Set the `PetscSection` encoding the local data layout for the `DM`.
4347: Input Parameters:
4348: + dm - The `DM`
4349: - section - The `PetscSection`
4351: Level: intermediate
4353: Note:
4354: Any existing Section will be destroyed
4356: .seealso: [](ch_dmbase), `DM`, `PetscSection`, `DMGetLocalSection()`, `DMSetGlobalSection()`
4357: @*/
4358: PetscErrorCode DMSetLocalSection(DM dm, PetscSection section)
4359: {
4360: PetscInt numFields = 0;
4361: PetscInt f;
4363: PetscFunctionBegin;
4366: PetscCall(PetscObjectReference((PetscObject)section));
4367: PetscCall(PetscSectionDestroy(&dm->localSection));
4368: dm->localSection = section;
4369: if (section) PetscCall(PetscSectionGetNumFields(dm->localSection, &numFields));
4370: if (numFields) {
4371: PetscCall(DMSetNumFields(dm, numFields));
4372: for (f = 0; f < numFields; ++f) {
4373: PetscObject disc;
4374: const char *name;
4376: PetscCall(PetscSectionGetFieldName(dm->localSection, f, &name));
4377: PetscCall(DMGetField(dm, f, NULL, &disc));
4378: PetscCall(PetscObjectSetName(disc, name));
4379: }
4380: }
4381: /* The global section and the SectionSF will be rebuilt
4382: in the next call to DMGetGlobalSection() and DMGetSectionSF(). */
4383: PetscCall(PetscSectionDestroy(&dm->globalSection));
4384: PetscCall(PetscSFDestroy(&dm->sectionSF));
4385: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)dm), &dm->sectionSF));
4387: /* Clear scratch vectors */
4388: PetscCall(DMClearGlobalVectors(dm));
4389: PetscCall(DMClearLocalVectors(dm));
4390: PetscCall(DMClearNamedGlobalVectors(dm));
4391: PetscCall(DMClearNamedLocalVectors(dm));
4392: PetscFunctionReturn(PETSC_SUCCESS);
4393: }
4395: /*@C
4396: DMCreateSectionPermutation - Create a permutation of the `PetscSection` chart and optionally a block structure.
4398: Input Parameter:
4399: . dm - The `DM`
4401: Output Parameters:
4402: + perm - A permutation of the mesh points in the chart
4403: - blockStarts - A high bit is set for the point that begins every block, or `NULL` for default blocking
4405: Level: developer
4407: .seealso: [](ch_dmbase), `DM`, `PetscSection`, `DMGetLocalSection()`, `DMGetGlobalSection()`
4408: @*/
4409: PetscErrorCode DMCreateSectionPermutation(DM dm, IS *perm, PetscBT *blockStarts)
4410: {
4411: PetscFunctionBegin;
4412: *perm = NULL;
4413: *blockStarts = NULL;
4414: PetscTryTypeMethod(dm, createsectionpermutation, perm, blockStarts);
4415: PetscFunctionReturn(PETSC_SUCCESS);
4416: }
4418: /*@
4419: DMGetDefaultConstraints - Get the `PetscSection` and `Mat` that specify the local constraint interpolation. See `DMSetDefaultConstraints()` for a description of the purpose of constraint interpolation.
4421: not Collective
4423: Input Parameter:
4424: . dm - The `DM`
4426: Output Parameters:
4427: + section - The `PetscSection` describing the range of the constraint matrix: relates rows of the constraint matrix to dofs of the default section. Returns `NULL` if there are no local constraints.
4428: . mat - The `Mat` that interpolates local constraints: its width should be the layout size of the default section. Returns `NULL` if there are no local constraints.
4429: - bias - Vector containing bias to be added to constrained dofs
4431: Level: advanced
4433: Note:
4434: This gets borrowed references, so the user should not destroy the `PetscSection`, `Mat`, or `Vec`.
4436: .seealso: [](ch_dmbase), `DM`, `DMSetDefaultConstraints()`
4437: @*/
4438: PetscErrorCode DMGetDefaultConstraints(DM dm, PetscSection *section, Mat *mat, Vec *bias)
4439: {
4440: PetscFunctionBegin;
4442: if (!dm->defaultConstraint.section && !dm->defaultConstraint.mat && dm->ops->createdefaultconstraints) PetscUseTypeMethod(dm, createdefaultconstraints);
4443: if (section) *section = dm->defaultConstraint.section;
4444: if (mat) *mat = dm->defaultConstraint.mat;
4445: if (bias) *bias = dm->defaultConstraint.bias;
4446: PetscFunctionReturn(PETSC_SUCCESS);
4447: }
4449: /*@
4450: DMSetDefaultConstraints - Set the `PetscSection` and `Mat` that specify the local constraint interpolation.
4452: Collective
4454: Input Parameters:
4455: + dm - The `DM`
4456: . section - The `PetscSection` describing the range of the constraint matrix: relates rows of the constraint matrix to dofs of the default section. Must have a local communicator (`PETSC_COMM_SELF` or derivative).
4457: . mat - The `Mat` that interpolates local constraints: its width should be the layout size of the default section: `NULL` indicates no constraints. Must have a local communicator (`PETSC_COMM_SELF` or derivative).
4458: - bias - A bias vector to be added to constrained values in the local vector. `NULL` indicates no bias. Must have a local communicator (`PETSC_COMM_SELF` or derivative).
4460: Level: advanced
4462: Notes:
4463: If a constraint matrix is specified, then it is applied during `DMGlobalToLocalEnd()` when mode is `INSERT_VALUES`, `INSERT_BC_VALUES`, or `INSERT_ALL_VALUES`. Without a constraint matrix, the local vector l returned by `DMGlobalToLocalEnd()` contains values that have been scattered from a global vector without modification; with a constraint matrix A, l is modified by computing c = A * l + bias, l[s[i]] = c[i], where the scatter s is defined by the `PetscSection` returned by `DMGetDefaultConstraints()`.
4465: If a constraint matrix is specified, then its adjoint is applied during `DMLocalToGlobalBegin()` when mode is `ADD_VALUES`, `ADD_BC_VALUES`, or `ADD_ALL_VALUES`. Without a constraint matrix, the local vector l is accumulated into a global vector without modification; with a constraint matrix A, l is first modified by computing c[i] = l[s[i]], l[s[i]] = 0, l = l + A'*c, which is the adjoint of the operation described above. Any bias, if specified, is ignored when accumulating.
4467: This increments the references of the `PetscSection`, `Mat`, and `Vec`, so they user can destroy them.
4469: .seealso: [](ch_dmbase), `DM`, `DMGetDefaultConstraints()`
4470: @*/
4471: PetscErrorCode DMSetDefaultConstraints(DM dm, PetscSection section, Mat mat, Vec bias)
4472: {
4473: PetscMPIInt result;
4475: PetscFunctionBegin;
4477: if (section) {
4479: PetscCallMPI(MPI_Comm_compare(PETSC_COMM_SELF, PetscObjectComm((PetscObject)section), &result));
4480: PetscCheck(result == MPI_CONGRUENT || result == MPI_IDENT, PETSC_COMM_SELF, PETSC_ERR_ARG_NOTSAMECOMM, "constraint section must have local communicator");
4481: }
4482: if (mat) {
4484: PetscCallMPI(MPI_Comm_compare(PETSC_COMM_SELF, PetscObjectComm((PetscObject)mat), &result));
4485: PetscCheck(result == MPI_CONGRUENT || result == MPI_IDENT, PETSC_COMM_SELF, PETSC_ERR_ARG_NOTSAMECOMM, "constraint matrix must have local communicator");
4486: }
4487: if (bias) {
4489: PetscCallMPI(MPI_Comm_compare(PETSC_COMM_SELF, PetscObjectComm((PetscObject)bias), &result));
4490: PetscCheck(result == MPI_CONGRUENT || result == MPI_IDENT, PETSC_COMM_SELF, PETSC_ERR_ARG_NOTSAMECOMM, "constraint bias must have local communicator");
4491: }
4492: PetscCall(PetscObjectReference((PetscObject)section));
4493: PetscCall(PetscSectionDestroy(&dm->defaultConstraint.section));
4494: dm->defaultConstraint.section = section;
4495: PetscCall(PetscObjectReference((PetscObject)mat));
4496: PetscCall(MatDestroy(&dm->defaultConstraint.mat));
4497: dm->defaultConstraint.mat = mat;
4498: PetscCall(PetscObjectReference((PetscObject)bias));
4499: PetscCall(VecDestroy(&dm->defaultConstraint.bias));
4500: dm->defaultConstraint.bias = bias;
4501: PetscFunctionReturn(PETSC_SUCCESS);
4502: }
4504: #if defined(PETSC_USE_DEBUG)
4505: /*
4506: DMDefaultSectionCheckConsistency - Check the consistentcy of the global and local sections. Generates and error if they are not consistent.
4508: Input Parameters:
4509: + dm - The `DM`
4510: . localSection - `PetscSection` describing the local data layout
4511: - globalSection - `PetscSection` describing the global data layout
4513: Level: intermediate
4515: .seealso: [](ch_dmbase), `DM`, `DMGetSectionSF()`, `DMSetSectionSF()`
4516: */
4517: static PetscErrorCode DMDefaultSectionCheckConsistency_Internal(DM dm, PetscSection localSection, PetscSection globalSection)
4518: {
4519: MPI_Comm comm;
4520: PetscLayout layout;
4521: const PetscInt *ranges;
4522: PetscInt pStart, pEnd, p, nroots;
4523: PetscMPIInt size, rank;
4524: PetscBool valid = PETSC_TRUE, gvalid;
4526: PetscFunctionBegin;
4527: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
4529: PetscCallMPI(MPI_Comm_size(comm, &size));
4530: PetscCallMPI(MPI_Comm_rank(comm, &rank));
4531: PetscCall(PetscSectionGetChart(globalSection, &pStart, &pEnd));
4532: PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &nroots));
4533: PetscCall(PetscLayoutCreate(comm, &layout));
4534: PetscCall(PetscLayoutSetBlockSize(layout, 1));
4535: PetscCall(PetscLayoutSetLocalSize(layout, nroots));
4536: PetscCall(PetscLayoutSetUp(layout));
4537: PetscCall(PetscLayoutGetRanges(layout, &ranges));
4538: for (p = pStart; p < pEnd; ++p) {
4539: PetscInt dof, cdof, off, gdof, gcdof, goff, gsize, d;
4541: PetscCall(PetscSectionGetDof(localSection, p, &dof));
4542: PetscCall(PetscSectionGetOffset(localSection, p, &off));
4543: PetscCall(PetscSectionGetConstraintDof(localSection, p, &cdof));
4544: PetscCall(PetscSectionGetDof(globalSection, p, &gdof));
4545: PetscCall(PetscSectionGetConstraintDof(globalSection, p, &gcdof));
4546: PetscCall(PetscSectionGetOffset(globalSection, p, &goff));
4547: if (!gdof) continue; /* Censored point */
4548: if ((gdof < 0 ? -(gdof + 1) : gdof) != dof) {
4549: PetscCall(PetscSynchronizedPrintf(comm, "[%d]Global dof %" PetscInt_FMT " for point %" PetscInt_FMT " not equal to local dof %" PetscInt_FMT "\n", rank, gdof, p, dof));
4550: valid = PETSC_FALSE;
4551: }
4552: if (gcdof && (gcdof != cdof)) {
4553: PetscCall(PetscSynchronizedPrintf(comm, "[%d]Global constraints %" PetscInt_FMT " for point %" PetscInt_FMT " not equal to local constraints %" PetscInt_FMT "\n", rank, gcdof, p, cdof));
4554: valid = PETSC_FALSE;
4555: }
4556: if (gdof < 0) {
4557: gsize = gdof < 0 ? -(gdof + 1) - gcdof : gdof - gcdof;
4558: for (d = 0; d < gsize; ++d) {
4559: PetscInt offset = -(goff + 1) + d, r;
4561: PetscCall(PetscFindInt(offset, size + 1, ranges, &r));
4562: if (r < 0) r = -(r + 2);
4563: if ((r < 0) || (r >= size)) {
4564: PetscCall(PetscSynchronizedPrintf(comm, "[%d]Point %" PetscInt_FMT " mapped to invalid process %" PetscInt_FMT " (%" PetscInt_FMT ", %" PetscInt_FMT ")\n", rank, p, r, gdof, goff));
4565: valid = PETSC_FALSE;
4566: break;
4567: }
4568: }
4569: }
4570: }
4571: PetscCall(PetscLayoutDestroy(&layout));
4572: PetscCall(PetscSynchronizedFlush(comm, NULL));
4573: PetscCallMPI(MPIU_Allreduce(&valid, &gvalid, 1, MPIU_BOOL, MPI_LAND, comm));
4574: if (!gvalid) {
4575: PetscCall(DMView(dm, NULL));
4576: SETERRQ(comm, PETSC_ERR_ARG_WRONG, "Inconsistent local and global sections");
4577: }
4578: PetscFunctionReturn(PETSC_SUCCESS);
4579: }
4580: #endif
4582: PetscErrorCode DMGetIsoperiodicPointSF_Internal(DM dm, PetscSF *sf)
4583: {
4584: PetscErrorCode (*f)(DM, PetscSF *);
4586: PetscFunctionBegin;
4588: PetscAssertPointer(sf, 2);
4589: PetscCall(PetscObjectQueryFunction((PetscObject)dm, "DMGetIsoperiodicPointSF_C", &f));
4590: if (f) PetscCall(f(dm, sf));
4591: else *sf = dm->sf;
4592: PetscFunctionReturn(PETSC_SUCCESS);
4593: }
4595: /*@
4596: DMGetGlobalSection - Get the `PetscSection` encoding the global data layout for the `DM`.
4598: Collective
4600: Input Parameter:
4601: . dm - The `DM`
4603: Output Parameter:
4604: . section - The `PetscSection`
4606: Level: intermediate
4608: Note:
4609: This gets a borrowed reference, so the user should not destroy this `PetscSection`.
4611: .seealso: [](ch_dmbase), `DM`, `DMSetLocalSection()`, `DMGetLocalSection()`
4612: @*/
4613: PetscErrorCode DMGetGlobalSection(DM dm, PetscSection *section)
4614: {
4615: PetscFunctionBegin;
4617: PetscAssertPointer(section, 2);
4618: if (!dm->globalSection) {
4619: PetscSection s;
4620: PetscSF sf;
4622: PetscCall(DMGetLocalSection(dm, &s));
4623: PetscCheck(s, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "DM must have a default PetscSection in order to create a global PetscSection");
4624: PetscCheck(dm->sf, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "DM must have a point PetscSF in order to create a global PetscSection");
4625: PetscCall(DMGetIsoperiodicPointSF_Internal(dm, &sf));
4626: PetscCall(PetscSectionCreateGlobalSection(s, sf, PETSC_TRUE, PETSC_FALSE, PETSC_FALSE, &dm->globalSection));
4627: PetscCall(PetscLayoutDestroy(&dm->map));
4628: PetscCall(PetscSectionGetValueLayout(PetscObjectComm((PetscObject)dm), dm->globalSection, &dm->map));
4629: PetscCall(PetscSectionViewFromOptions(dm->globalSection, NULL, "-global_section_view"));
4630: }
4631: *section = dm->globalSection;
4632: PetscFunctionReturn(PETSC_SUCCESS);
4633: }
4635: /*@
4636: DMSetGlobalSection - Set the `PetscSection` encoding the global data layout for the `DM`.
4638: Input Parameters:
4639: + dm - The `DM`
4640: - section - The PetscSection, or `NULL`
4642: Level: intermediate
4644: Note:
4645: Any existing `PetscSection` will be destroyed
4647: .seealso: [](ch_dmbase), `DM`, `DMGetGlobalSection()`, `DMSetLocalSection()`
4648: @*/
4649: PetscErrorCode DMSetGlobalSection(DM dm, PetscSection section)
4650: {
4651: PetscFunctionBegin;
4654: PetscCall(PetscObjectReference((PetscObject)section));
4655: PetscCall(PetscSectionDestroy(&dm->globalSection));
4656: dm->globalSection = section;
4657: #if defined(PETSC_USE_DEBUG)
4658: if (section) PetscCall(DMDefaultSectionCheckConsistency_Internal(dm, dm->localSection, section));
4659: #endif
4660: /* Clear global scratch vectors and sectionSF */
4661: PetscCall(PetscSFDestroy(&dm->sectionSF));
4662: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)dm), &dm->sectionSF));
4663: PetscCall(DMClearGlobalVectors(dm));
4664: PetscCall(DMClearNamedGlobalVectors(dm));
4665: PetscFunctionReturn(PETSC_SUCCESS);
4666: }
4668: /*@
4669: DMGetSectionSF - Get the `PetscSF` encoding the parallel dof overlap for the `DM`. If it has not been set,
4670: it is created from the default `PetscSection` layouts in the `DM`.
4672: Input Parameter:
4673: . dm - The `DM`
4675: Output Parameter:
4676: . sf - The `PetscSF`
4678: Level: intermediate
4680: Note:
4681: This gets a borrowed reference, so the user should not destroy this `PetscSF`.
4683: .seealso: [](ch_dmbase), `DM`, `DMSetSectionSF()`, `DMCreateSectionSF()`
4684: @*/
4685: PetscErrorCode DMGetSectionSF(DM dm, PetscSF *sf)
4686: {
4687: PetscInt nroots;
4689: PetscFunctionBegin;
4691: PetscAssertPointer(sf, 2);
4692: if (!dm->sectionSF) PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)dm), &dm->sectionSF));
4693: PetscCall(PetscSFGetGraph(dm->sectionSF, &nroots, NULL, NULL, NULL));
4694: if (nroots < 0) {
4695: PetscSection section, gSection;
4697: PetscCall(DMGetLocalSection(dm, §ion));
4698: if (section) {
4699: PetscCall(DMGetGlobalSection(dm, &gSection));
4700: PetscCall(DMCreateSectionSF(dm, section, gSection));
4701: } else {
4702: *sf = NULL;
4703: PetscFunctionReturn(PETSC_SUCCESS);
4704: }
4705: }
4706: *sf = dm->sectionSF;
4707: PetscFunctionReturn(PETSC_SUCCESS);
4708: }
4710: /*@
4711: DMSetSectionSF - Set the `PetscSF` encoding the parallel dof overlap for the `DM`
4713: Input Parameters:
4714: + dm - The `DM`
4715: - sf - The `PetscSF`
4717: Level: intermediate
4719: Note:
4720: Any previous `PetscSF` is destroyed
4722: .seealso: [](ch_dmbase), `DM`, `DMGetSectionSF()`, `DMCreateSectionSF()`
4723: @*/
4724: PetscErrorCode DMSetSectionSF(DM dm, PetscSF sf)
4725: {
4726: PetscFunctionBegin;
4729: PetscCall(PetscObjectReference((PetscObject)sf));
4730: PetscCall(PetscSFDestroy(&dm->sectionSF));
4731: dm->sectionSF = sf;
4732: PetscFunctionReturn(PETSC_SUCCESS);
4733: }
4735: /*@
4736: DMCreateSectionSF - Create the `PetscSF` encoding the parallel dof overlap for the `DM` based upon the `PetscSection`s
4737: describing the data layout.
4739: Input Parameters:
4740: + dm - The `DM`
4741: . localSection - `PetscSection` describing the local data layout
4742: - globalSection - `PetscSection` describing the global data layout
4744: Level: developer
4746: Note:
4747: One usually uses `DMGetSectionSF()` to obtain the `PetscSF`
4749: Developer Note:
4750: Since this routine has for arguments the two sections from the `DM` and puts the resulting `PetscSF`
4751: directly into the `DM`, perhaps this function should not take the local and global sections as
4752: input and should just obtain them from the `DM`? Plus PETSc creation functions return the thing
4753: they create, this returns nothing
4755: .seealso: [](ch_dmbase), `DM`, `DMGetSectionSF()`, `DMSetSectionSF()`, `DMGetLocalSection()`, `DMGetGlobalSection()`
4756: @*/
4757: PetscErrorCode DMCreateSectionSF(DM dm, PetscSection localSection, PetscSection globalSection)
4758: {
4759: PetscFunctionBegin;
4761: PetscCall(PetscSFSetGraphSection(dm->sectionSF, localSection, globalSection));
4762: PetscFunctionReturn(PETSC_SUCCESS);
4763: }
4765: /*@
4766: DMGetPointSF - Get the `PetscSF` encoding the parallel section point overlap for the `DM`.
4768: Not collective but the resulting `PetscSF` is collective
4770: Input Parameter:
4771: . dm - The `DM`
4773: Output Parameter:
4774: . sf - The `PetscSF`
4776: Level: intermediate
4778: Note:
4779: This gets a borrowed reference, so the user should not destroy this `PetscSF`.
4781: .seealso: [](ch_dmbase), `DM`, `DMSetPointSF()`, `DMGetSectionSF()`, `DMSetSectionSF()`, `DMCreateSectionSF()`
4782: @*/
4783: PetscErrorCode DMGetPointSF(DM dm, PetscSF *sf)
4784: {
4785: PetscFunctionBegin;
4787: PetscAssertPointer(sf, 2);
4788: *sf = dm->sf;
4789: PetscFunctionReturn(PETSC_SUCCESS);
4790: }
4792: /*@
4793: DMSetPointSF - Set the `PetscSF` encoding the parallel section point overlap for the `DM`.
4795: Collective
4797: Input Parameters:
4798: + dm - The `DM`
4799: - sf - The `PetscSF`
4801: Level: intermediate
4803: .seealso: [](ch_dmbase), `DM`, `DMGetPointSF()`, `DMGetSectionSF()`, `DMSetSectionSF()`, `DMCreateSectionSF()`
4804: @*/
4805: PetscErrorCode DMSetPointSF(DM dm, PetscSF sf)
4806: {
4807: PetscFunctionBegin;
4810: PetscCall(PetscObjectReference((PetscObject)sf));
4811: PetscCall(PetscSFDestroy(&dm->sf));
4812: dm->sf = sf;
4813: PetscFunctionReturn(PETSC_SUCCESS);
4814: }
4816: /*@
4817: DMGetNaturalSF - Get the `PetscSF` encoding the map back to the original mesh ordering
4819: Input Parameter:
4820: . dm - The `DM`
4822: Output Parameter:
4823: . sf - The `PetscSF`
4825: Level: intermediate
4827: Note:
4828: This gets a borrowed reference, so the user should not destroy this `PetscSF`.
4830: .seealso: [](ch_dmbase), `DM`, `DMSetNaturalSF()`, `DMSetUseNatural()`, `DMGetUseNatural()`, `DMPlexCreateGlobalToNaturalSF()`, `DMPlexDistribute()`
4831: @*/
4832: PetscErrorCode DMGetNaturalSF(DM dm, PetscSF *sf)
4833: {
4834: PetscFunctionBegin;
4836: PetscAssertPointer(sf, 2);
4837: *sf = dm->sfNatural;
4838: PetscFunctionReturn(PETSC_SUCCESS);
4839: }
4841: /*@
4842: DMSetNaturalSF - Set the PetscSF encoding the map back to the original mesh ordering
4844: Input Parameters:
4845: + dm - The DM
4846: - sf - The PetscSF
4848: Level: intermediate
4850: .seealso: [](ch_dmbase), `DM`, `DMGetNaturalSF()`, `DMSetUseNatural()`, `DMGetUseNatural()`, `DMPlexCreateGlobalToNaturalSF()`, `DMPlexDistribute()`
4851: @*/
4852: PetscErrorCode DMSetNaturalSF(DM dm, PetscSF sf)
4853: {
4854: PetscFunctionBegin;
4857: PetscCall(PetscObjectReference((PetscObject)sf));
4858: PetscCall(PetscSFDestroy(&dm->sfNatural));
4859: dm->sfNatural = sf;
4860: PetscFunctionReturn(PETSC_SUCCESS);
4861: }
4863: static PetscErrorCode DMSetDefaultAdjacency_Private(DM dm, PetscInt f, PetscObject disc)
4864: {
4865: PetscClassId id;
4867: PetscFunctionBegin;
4868: PetscCall(PetscObjectGetClassId(disc, &id));
4869: if (id == PETSCFE_CLASSID) {
4870: PetscCall(DMSetAdjacency(dm, f, PETSC_FALSE, PETSC_TRUE));
4871: } else if (id == PETSCFV_CLASSID) {
4872: PetscCall(DMSetAdjacency(dm, f, PETSC_TRUE, PETSC_FALSE));
4873: } else {
4874: PetscCall(DMSetAdjacency(dm, f, PETSC_FALSE, PETSC_TRUE));
4875: }
4876: PetscFunctionReturn(PETSC_SUCCESS);
4877: }
4879: static PetscErrorCode DMFieldEnlarge_Static(DM dm, PetscInt NfNew)
4880: {
4881: RegionField *tmpr;
4882: PetscInt Nf = dm->Nf, f;
4884: PetscFunctionBegin;
4885: if (Nf >= NfNew) PetscFunctionReturn(PETSC_SUCCESS);
4886: PetscCall(PetscMalloc1(NfNew, &tmpr));
4887: for (f = 0; f < Nf; ++f) tmpr[f] = dm->fields[f];
4888: for (f = Nf; f < NfNew; ++f) {
4889: tmpr[f].disc = NULL;
4890: tmpr[f].label = NULL;
4891: tmpr[f].avoidTensor = PETSC_FALSE;
4892: }
4893: PetscCall(PetscFree(dm->fields));
4894: dm->Nf = NfNew;
4895: dm->fields = tmpr;
4896: PetscFunctionReturn(PETSC_SUCCESS);
4897: }
4899: /*@
4900: DMClearFields - Remove all fields from the `DM`
4902: Logically Collective
4904: Input Parameter:
4905: . dm - The `DM`
4907: Level: intermediate
4909: .seealso: [](ch_dmbase), `DM`, `DMGetNumFields()`, `DMSetNumFields()`, `DMSetField()`
4910: @*/
4911: PetscErrorCode DMClearFields(DM dm)
4912: {
4913: PetscInt f;
4915: PetscFunctionBegin;
4917: for (f = 0; f < dm->Nf; ++f) {
4918: PetscCall(PetscObjectDestroy(&dm->fields[f].disc));
4919: PetscCall(DMLabelDestroy(&dm->fields[f].label));
4920: }
4921: PetscCall(PetscFree(dm->fields));
4922: dm->fields = NULL;
4923: dm->Nf = 0;
4924: PetscFunctionReturn(PETSC_SUCCESS);
4925: }
4927: /*@
4928: DMGetNumFields - Get the number of fields in the `DM`
4930: Not Collective
4932: Input Parameter:
4933: . dm - The `DM`
4935: Output Parameter:
4936: . numFields - The number of fields
4938: Level: intermediate
4940: .seealso: [](ch_dmbase), `DM`, `DMSetNumFields()`, `DMSetField()`
4941: @*/
4942: PetscErrorCode DMGetNumFields(DM dm, PetscInt *numFields)
4943: {
4944: PetscFunctionBegin;
4946: PetscAssertPointer(numFields, 2);
4947: *numFields = dm->Nf;
4948: PetscFunctionReturn(PETSC_SUCCESS);
4949: }
4951: /*@
4952: DMSetNumFields - Set the number of fields in the `DM`
4954: Logically Collective
4956: Input Parameters:
4957: + dm - The `DM`
4958: - numFields - The number of fields
4960: Level: intermediate
4962: .seealso: [](ch_dmbase), `DM`, `DMGetNumFields()`, `DMSetField()`
4963: @*/
4964: PetscErrorCode DMSetNumFields(DM dm, PetscInt numFields)
4965: {
4966: PetscInt Nf, f;
4968: PetscFunctionBegin;
4970: PetscCall(DMGetNumFields(dm, &Nf));
4971: for (f = Nf; f < numFields; ++f) {
4972: PetscContainer obj;
4974: PetscCall(PetscContainerCreate(PetscObjectComm((PetscObject)dm), &obj));
4975: PetscCall(DMAddField(dm, NULL, (PetscObject)obj));
4976: PetscCall(PetscContainerDestroy(&obj));
4977: }
4978: PetscFunctionReturn(PETSC_SUCCESS);
4979: }
4981: /*@
4982: DMGetField - Return the `DMLabel` and discretization object for a given `DM` field
4984: Not Collective
4986: Input Parameters:
4987: + dm - The `DM`
4988: - f - The field number
4990: Output Parameters:
4991: + label - The label indicating the support of the field, or `NULL` for the entire mesh (pass in `NULL` if not needed)
4992: - disc - The discretization object (pass in `NULL` if not needed)
4994: Level: intermediate
4996: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMSetField()`
4997: @*/
4998: PetscErrorCode DMGetField(DM dm, PetscInt f, DMLabel *label, PetscObject *disc)
4999: {
5000: PetscFunctionBegin;
5002: PetscAssertPointer(disc, 4);
5003: PetscCheck((f >= 0) && (f < dm->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, dm->Nf);
5004: if (label) *label = dm->fields[f].label;
5005: if (disc) *disc = dm->fields[f].disc;
5006: PetscFunctionReturn(PETSC_SUCCESS);
5007: }
5009: /* Does not clear the DS */
5010: PetscErrorCode DMSetField_Internal(DM dm, PetscInt f, DMLabel label, PetscObject disc)
5011: {
5012: PetscFunctionBegin;
5013: PetscCall(DMFieldEnlarge_Static(dm, f + 1));
5014: PetscCall(DMLabelDestroy(&dm->fields[f].label));
5015: PetscCall(PetscObjectDestroy(&dm->fields[f].disc));
5016: dm->fields[f].label = label;
5017: dm->fields[f].disc = disc;
5018: PetscCall(PetscObjectReference((PetscObject)label));
5019: PetscCall(PetscObjectReference(disc));
5020: PetscFunctionReturn(PETSC_SUCCESS);
5021: }
5023: /*@
5024: DMSetField - Set the discretization object for a given `DM` field. Usually one would call `DMAddField()` which automatically handles
5025: the field numbering.
5027: Logically Collective
5029: Input Parameters:
5030: + dm - The `DM`
5031: . f - The field number
5032: . label - The label indicating the support of the field, or `NULL` for the entire mesh
5033: - disc - The discretization object
5035: Level: intermediate
5037: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetField()`
5038: @*/
5039: PetscErrorCode DMSetField(DM dm, PetscInt f, DMLabel label, PetscObject disc)
5040: {
5041: PetscFunctionBegin;
5045: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
5046: PetscCall(DMSetField_Internal(dm, f, label, disc));
5047: PetscCall(DMSetDefaultAdjacency_Private(dm, f, disc));
5048: PetscCall(DMClearDS(dm));
5049: PetscFunctionReturn(PETSC_SUCCESS);
5050: }
5052: /*@
5053: DMAddField - Add a field to a `DM` object. A field is a function space defined by of a set of discretization points (geometric entities)
5054: and a discretization object that defines the function space associated with those points.
5056: Logically Collective
5058: Input Parameters:
5059: + dm - The `DM`
5060: . label - The label indicating the support of the field, or `NULL` for the entire mesh
5061: - disc - The discretization object
5063: Level: intermediate
5065: Notes:
5066: The label already exists or will be added to the `DM` with `DMSetLabel()`.
5068: For example, a piecewise continuous pressure field can be defined by coefficients at the cell centers of a mesh and piecewise constant functions
5069: within each cell. Thus a specific function in the space is defined by the combination of a `Vec` containing the coefficients, a `DM` defining the
5070: geometry entities, a `DMLabel` indicating a subset of those geometric entities, and a discretization object, such as a `PetscFE`.
5072: Fortran Note:
5073: Use the argument `PetscObjectCast(disc)` as the second argument
5075: .seealso: [](ch_dmbase), `DM`, `DMSetLabel()`, `DMSetField()`, `DMGetField()`, `PetscFE`
5076: @*/
5077: PetscErrorCode DMAddField(DM dm, DMLabel label, PetscObject disc)
5078: {
5079: PetscInt Nf = dm->Nf;
5081: PetscFunctionBegin;
5085: PetscCall(DMFieldEnlarge_Static(dm, Nf + 1));
5086: dm->fields[Nf].label = label;
5087: dm->fields[Nf].disc = disc;
5088: PetscCall(PetscObjectReference((PetscObject)label));
5089: PetscCall(PetscObjectReference(disc));
5090: PetscCall(DMSetDefaultAdjacency_Private(dm, Nf, disc));
5091: PetscCall(DMClearDS(dm));
5092: PetscFunctionReturn(PETSC_SUCCESS);
5093: }
5095: /*@
5096: DMSetFieldAvoidTensor - Set flag to avoid defining the field on tensor cells
5098: Logically Collective
5100: Input Parameters:
5101: + dm - The `DM`
5102: . f - The field index
5103: - avoidTensor - `PETSC_TRUE` to skip defining the field on tensor cells
5105: Level: intermediate
5107: .seealso: [](ch_dmbase), `DM`, `DMGetFieldAvoidTensor()`, `DMSetField()`, `DMGetField()`
5108: @*/
5109: PetscErrorCode DMSetFieldAvoidTensor(DM dm, PetscInt f, PetscBool avoidTensor)
5110: {
5111: PetscFunctionBegin;
5112: PetscCheck((f >= 0) && (f < dm->Nf), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", f, dm->Nf);
5113: dm->fields[f].avoidTensor = avoidTensor;
5114: PetscFunctionReturn(PETSC_SUCCESS);
5115: }
5117: /*@
5118: DMGetFieldAvoidTensor - Get flag to avoid defining the field on tensor cells
5120: Not Collective
5122: Input Parameters:
5123: + dm - The `DM`
5124: - f - The field index
5126: Output Parameter:
5127: . avoidTensor - The flag to avoid defining the field on tensor cells
5129: Level: intermediate
5131: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMSetField()`, `DMGetField()`, `DMSetFieldAvoidTensor()`
5132: @*/
5133: PetscErrorCode DMGetFieldAvoidTensor(DM dm, PetscInt f, PetscBool *avoidTensor)
5134: {
5135: PetscFunctionBegin;
5136: PetscCheck((f >= 0) && (f < dm->Nf), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", f, dm->Nf);
5137: *avoidTensor = dm->fields[f].avoidTensor;
5138: PetscFunctionReturn(PETSC_SUCCESS);
5139: }
5141: /*@
5142: DMCopyFields - Copy the discretizations for the `DM` into another `DM`
5144: Collective
5146: Input Parameters:
5147: + dm - The `DM`
5148: . minDegree - Minimum degree for a discretization, or `PETSC_DETERMINE` for no limit
5149: - maxDegree - Maximum degree for a discretization, or `PETSC_DETERMINE` for no limit
5151: Output Parameter:
5152: . newdm - The `DM`
5154: Level: advanced
5156: .seealso: [](ch_dmbase), `DM`, `DMGetField()`, `DMSetField()`, `DMAddField()`, `DMCopyDS()`, `DMGetDS()`, `DMGetCellDS()`
5157: @*/
5158: PetscErrorCode DMCopyFields(DM dm, PetscInt minDegree, PetscInt maxDegree, DM newdm)
5159: {
5160: PetscInt Nf, f;
5162: PetscFunctionBegin;
5163: if (dm == newdm) PetscFunctionReturn(PETSC_SUCCESS);
5164: PetscCall(DMGetNumFields(dm, &Nf));
5165: PetscCall(DMClearFields(newdm));
5166: for (f = 0; f < Nf; ++f) {
5167: DMLabel label;
5168: PetscObject field;
5169: PetscClassId id;
5170: PetscBool useCone, useClosure;
5172: PetscCall(DMGetField(dm, f, &label, &field));
5173: PetscCall(PetscObjectGetClassId(field, &id));
5174: if (id == PETSCFE_CLASSID) {
5175: PetscFE newfe;
5177: PetscCall(PetscFELimitDegree((PetscFE)field, minDegree, maxDegree, &newfe));
5178: PetscCall(DMSetField(newdm, f, label, (PetscObject)newfe));
5179: PetscCall(PetscFEDestroy(&newfe));
5180: } else {
5181: PetscCall(DMSetField(newdm, f, label, field));
5182: }
5183: PetscCall(DMGetAdjacency(dm, f, &useCone, &useClosure));
5184: PetscCall(DMSetAdjacency(newdm, f, useCone, useClosure));
5185: }
5186: PetscFunctionReturn(PETSC_SUCCESS);
5187: }
5189: /*@
5190: DMGetAdjacency - Returns the flags for determining variable influence
5192: Not Collective
5194: Input Parameters:
5195: + dm - The `DM` object
5196: - f - The field number, or `PETSC_DEFAULT` for the default adjacency
5198: Output Parameters:
5199: + useCone - Flag for variable influence starting with the cone operation
5200: - useClosure - Flag for variable influence using transitive closure
5202: Level: developer
5204: Notes:
5205: .vb
5206: FEM: Two points p and q are adjacent if q \in closure(star(p)), useCone = PETSC_FALSE, useClosure = PETSC_TRUE
5207: FVM: Two points p and q are adjacent if q \in support(p+cone(p)), useCone = PETSC_TRUE, useClosure = PETSC_FALSE
5208: FVM++: Two points p and q are adjacent if q \in star(closure(p)), useCone = PETSC_TRUE, useClosure = PETSC_TRUE
5209: .ve
5210: Further explanation can be found in the User's Manual Section on the Influence of Variables on One Another.
5212: .seealso: [](ch_dmbase), `DM`, `DMSetAdjacency()`, `DMGetField()`, `DMSetField()`
5213: @*/
5214: PetscErrorCode DMGetAdjacency(DM dm, PetscInt f, PetscBool *useCone, PetscBool *useClosure)
5215: {
5216: PetscFunctionBegin;
5218: if (useCone) PetscAssertPointer(useCone, 3);
5219: if (useClosure) PetscAssertPointer(useClosure, 4);
5220: if (f < 0) {
5221: if (useCone) *useCone = dm->adjacency[0];
5222: if (useClosure) *useClosure = dm->adjacency[1];
5223: } else {
5224: PetscInt Nf;
5226: PetscCall(DMGetNumFields(dm, &Nf));
5227: PetscCheck(f < Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, Nf);
5228: if (useCone) *useCone = dm->fields[f].adjacency[0];
5229: if (useClosure) *useClosure = dm->fields[f].adjacency[1];
5230: }
5231: PetscFunctionReturn(PETSC_SUCCESS);
5232: }
5234: /*@
5235: DMSetAdjacency - Set the flags for determining variable influence
5237: Not Collective
5239: Input Parameters:
5240: + dm - The `DM` object
5241: . f - The field number
5242: . useCone - Flag for variable influence starting with the cone operation
5243: - useClosure - Flag for variable influence using transitive closure
5245: Level: developer
5247: Notes:
5248: .vb
5249: FEM: Two points p and q are adjacent if q \in closure(star(p)), useCone = PETSC_FALSE, useClosure = PETSC_TRUE
5250: FVM: Two points p and q are adjacent if q \in support(p+cone(p)), useCone = PETSC_TRUE, useClosure = PETSC_FALSE
5251: FVM++: Two points p and q are adjacent if q \in star(closure(p)), useCone = PETSC_TRUE, useClosure = PETSC_TRUE
5252: .ve
5253: Further explanation can be found in the User's Manual Section on the Influence of Variables on One Another.
5255: .seealso: [](ch_dmbase), `DM`, `DMGetAdjacency()`, `DMGetField()`, `DMSetField()`
5256: @*/
5257: PetscErrorCode DMSetAdjacency(DM dm, PetscInt f, PetscBool useCone, PetscBool useClosure)
5258: {
5259: PetscFunctionBegin;
5261: if (f < 0) {
5262: dm->adjacency[0] = useCone;
5263: dm->adjacency[1] = useClosure;
5264: } else {
5265: PetscInt Nf;
5267: PetscCall(DMGetNumFields(dm, &Nf));
5268: PetscCheck(f < Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, Nf);
5269: dm->fields[f].adjacency[0] = useCone;
5270: dm->fields[f].adjacency[1] = useClosure;
5271: }
5272: PetscFunctionReturn(PETSC_SUCCESS);
5273: }
5275: /*@
5276: DMGetBasicAdjacency - Returns the flags for determining variable influence, using either the default or field 0 if it is defined
5278: Not collective
5280: Input Parameter:
5281: . dm - The `DM` object
5283: Output Parameters:
5284: + useCone - Flag for variable influence starting with the cone operation
5285: - useClosure - Flag for variable influence using transitive closure
5287: Level: developer
5289: Notes:
5290: .vb
5291: FEM: Two points p and q are adjacent if q \in closure(star(p)), useCone = PETSC_FALSE, useClosure = PETSC_TRUE
5292: FVM: Two points p and q are adjacent if q \in support(p+cone(p)), useCone = PETSC_TRUE, useClosure = PETSC_FALSE
5293: FVM++: Two points p and q are adjacent if q \in star(closure(p)), useCone = PETSC_TRUE, useClosure = PETSC_TRUE
5294: .ve
5296: .seealso: [](ch_dmbase), `DM`, `DMSetBasicAdjacency()`, `DMGetField()`, `DMSetField()`
5297: @*/
5298: PetscErrorCode DMGetBasicAdjacency(DM dm, PetscBool *useCone, PetscBool *useClosure)
5299: {
5300: PetscInt Nf;
5302: PetscFunctionBegin;
5304: if (useCone) PetscAssertPointer(useCone, 2);
5305: if (useClosure) PetscAssertPointer(useClosure, 3);
5306: PetscCall(DMGetNumFields(dm, &Nf));
5307: if (!Nf) {
5308: PetscCall(DMGetAdjacency(dm, PETSC_DEFAULT, useCone, useClosure));
5309: } else {
5310: PetscCall(DMGetAdjacency(dm, 0, useCone, useClosure));
5311: }
5312: PetscFunctionReturn(PETSC_SUCCESS);
5313: }
5315: /*@
5316: DMSetBasicAdjacency - Set the flags for determining variable influence, using either the default or field 0 if it is defined
5318: Not Collective
5320: Input Parameters:
5321: + dm - The `DM` object
5322: . useCone - Flag for variable influence starting with the cone operation
5323: - useClosure - Flag for variable influence using transitive closure
5325: Level: developer
5327: Notes:
5328: .vb
5329: FEM: Two points p and q are adjacent if q \in closure(star(p)), useCone = PETSC_FALSE, useClosure = PETSC_TRUE
5330: FVM: Two points p and q are adjacent if q \in support(p+cone(p)), useCone = PETSC_TRUE, useClosure = PETSC_FALSE
5331: FVM++: Two points p and q are adjacent if q \in star(closure(p)), useCone = PETSC_TRUE, useClosure = PETSC_TRUE
5332: .ve
5334: .seealso: [](ch_dmbase), `DM`, `DMGetBasicAdjacency()`, `DMGetField()`, `DMSetField()`
5335: @*/
5336: PetscErrorCode DMSetBasicAdjacency(DM dm, PetscBool useCone, PetscBool useClosure)
5337: {
5338: PetscInt Nf;
5340: PetscFunctionBegin;
5342: PetscCall(DMGetNumFields(dm, &Nf));
5343: if (!Nf) {
5344: PetscCall(DMSetAdjacency(dm, PETSC_DEFAULT, useCone, useClosure));
5345: } else {
5346: PetscCall(DMSetAdjacency(dm, 0, useCone, useClosure));
5347: }
5348: PetscFunctionReturn(PETSC_SUCCESS);
5349: }
5351: PetscErrorCode DMCompleteBCLabels_Internal(DM dm)
5352: {
5353: DM plex;
5354: DMLabel *labels, *glabels;
5355: const char **names;
5356: char *sendNames, *recvNames;
5357: PetscInt Nds, s, maxLabels = 0, maxLen = 0, gmaxLen, Nl = 0, gNl, l, gl, m;
5358: size_t len;
5359: MPI_Comm comm;
5360: PetscMPIInt rank, size, p, *counts, *displs;
5362: PetscFunctionBegin;
5363: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
5364: PetscCallMPI(MPI_Comm_size(comm, &size));
5365: PetscCallMPI(MPI_Comm_rank(comm, &rank));
5366: PetscCall(DMGetNumDS(dm, &Nds));
5367: for (s = 0; s < Nds; ++s) {
5368: PetscDS dsBC;
5369: PetscInt numBd;
5371: PetscCall(DMGetRegionNumDS(dm, s, NULL, NULL, &dsBC, NULL));
5372: PetscCall(PetscDSGetNumBoundary(dsBC, &numBd));
5373: maxLabels += numBd;
5374: }
5375: PetscCall(PetscCalloc1(maxLabels, &labels));
5376: /* Get list of labels to be completed */
5377: for (s = 0; s < Nds; ++s) {
5378: PetscDS dsBC;
5379: PetscInt numBd, bd;
5381: PetscCall(DMGetRegionNumDS(dm, s, NULL, NULL, &dsBC, NULL));
5382: PetscCall(PetscDSGetNumBoundary(dsBC, &numBd));
5383: for (bd = 0; bd < numBd; ++bd) {
5384: DMLabel label;
5385: PetscInt field;
5386: PetscObject obj;
5387: PetscClassId id;
5389: PetscCall(PetscDSGetBoundary(dsBC, bd, NULL, NULL, NULL, &label, NULL, NULL, &field, NULL, NULL, NULL, NULL, NULL));
5390: PetscCall(DMGetField(dm, field, NULL, &obj));
5391: PetscCall(PetscObjectGetClassId(obj, &id));
5392: if (id != PETSCFE_CLASSID || !label) continue;
5393: for (l = 0; l < Nl; ++l)
5394: if (labels[l] == label) break;
5395: if (l == Nl) labels[Nl++] = label;
5396: }
5397: }
5398: /* Get label names */
5399: PetscCall(PetscMalloc1(Nl, &names));
5400: for (l = 0; l < Nl; ++l) PetscCall(PetscObjectGetName((PetscObject)labels[l], &names[l]));
5401: for (l = 0; l < Nl; ++l) {
5402: PetscCall(PetscStrlen(names[l], &len));
5403: maxLen = PetscMax(maxLen, (PetscInt)len + 2);
5404: }
5405: PetscCall(PetscFree(labels));
5406: PetscCallMPI(MPIU_Allreduce(&maxLen, &gmaxLen, 1, MPIU_INT, MPI_MAX, comm));
5407: PetscCall(PetscCalloc1(Nl * gmaxLen, &sendNames));
5408: for (l = 0; l < Nl; ++l) PetscCall(PetscStrncpy(&sendNames[gmaxLen * l], names[l], gmaxLen));
5409: PetscCall(PetscFree(names));
5410: /* Put all names on all processes */
5411: PetscCall(PetscCalloc2(size, &counts, size + 1, &displs));
5412: PetscCallMPI(MPI_Allgather(&Nl, 1, MPI_INT, counts, 1, MPI_INT, comm));
5413: for (p = 0; p < size; ++p) displs[p + 1] = displs[p] + counts[p];
5414: gNl = displs[size];
5415: for (p = 0; p < size; ++p) {
5416: counts[p] *= gmaxLen;
5417: displs[p] *= gmaxLen;
5418: }
5419: PetscCall(PetscCalloc2(gNl * gmaxLen, &recvNames, gNl, &glabels));
5420: PetscCallMPI(MPI_Allgatherv(sendNames, counts[rank], MPI_CHAR, recvNames, counts, displs, MPI_CHAR, comm));
5421: PetscCall(PetscFree2(counts, displs));
5422: PetscCall(PetscFree(sendNames));
5423: for (l = 0, gl = 0; l < gNl; ++l) {
5424: PetscCall(DMGetLabel(dm, &recvNames[l * gmaxLen], &glabels[gl]));
5425: PetscCheck(glabels[gl], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Label %s missing on rank %d", &recvNames[l * gmaxLen], rank);
5426: for (m = 0; m < gl; ++m)
5427: if (glabels[m] == glabels[gl]) goto next_label;
5428: PetscCall(DMConvert(dm, DMPLEX, &plex));
5429: PetscCall(DMPlexLabelComplete(plex, glabels[gl]));
5430: PetscCall(DMDestroy(&plex));
5431: ++gl;
5432: next_label:
5433: continue;
5434: }
5435: PetscCall(PetscFree2(recvNames, glabels));
5436: PetscFunctionReturn(PETSC_SUCCESS);
5437: }
5439: static PetscErrorCode DMDSEnlarge_Static(DM dm, PetscInt NdsNew)
5440: {
5441: DMSpace *tmpd;
5442: PetscInt Nds = dm->Nds, s;
5444: PetscFunctionBegin;
5445: if (Nds >= NdsNew) PetscFunctionReturn(PETSC_SUCCESS);
5446: PetscCall(PetscMalloc1(NdsNew, &tmpd));
5447: for (s = 0; s < Nds; ++s) tmpd[s] = dm->probs[s];
5448: for (s = Nds; s < NdsNew; ++s) {
5449: tmpd[s].ds = NULL;
5450: tmpd[s].label = NULL;
5451: tmpd[s].fields = NULL;
5452: }
5453: PetscCall(PetscFree(dm->probs));
5454: dm->Nds = NdsNew;
5455: dm->probs = tmpd;
5456: PetscFunctionReturn(PETSC_SUCCESS);
5457: }
5459: /*@
5460: DMGetNumDS - Get the number of discrete systems in the `DM`
5462: Not Collective
5464: Input Parameter:
5465: . dm - The `DM`
5467: Output Parameter:
5468: . Nds - The number of `PetscDS` objects
5470: Level: intermediate
5472: .seealso: [](ch_dmbase), `DM`, `DMGetDS()`, `DMGetCellDS()`
5473: @*/
5474: PetscErrorCode DMGetNumDS(DM dm, PetscInt *Nds)
5475: {
5476: PetscFunctionBegin;
5478: PetscAssertPointer(Nds, 2);
5479: *Nds = dm->Nds;
5480: PetscFunctionReturn(PETSC_SUCCESS);
5481: }
5483: /*@
5484: DMClearDS - Remove all discrete systems from the `DM`
5486: Logically Collective
5488: Input Parameter:
5489: . dm - The `DM`
5491: Level: intermediate
5493: .seealso: [](ch_dmbase), `DM`, `DMGetNumDS()`, `DMGetDS()`, `DMSetField()`
5494: @*/
5495: PetscErrorCode DMClearDS(DM dm)
5496: {
5497: PetscInt s;
5499: PetscFunctionBegin;
5501: for (s = 0; s < dm->Nds; ++s) {
5502: PetscCall(PetscDSDestroy(&dm->probs[s].ds));
5503: PetscCall(PetscDSDestroy(&dm->probs[s].dsIn));
5504: PetscCall(DMLabelDestroy(&dm->probs[s].label));
5505: PetscCall(ISDestroy(&dm->probs[s].fields));
5506: }
5507: PetscCall(PetscFree(dm->probs));
5508: dm->probs = NULL;
5509: dm->Nds = 0;
5510: PetscFunctionReturn(PETSC_SUCCESS);
5511: }
5513: /*@
5514: DMGetDS - Get the default `PetscDS`
5516: Not Collective
5518: Input Parameter:
5519: . dm - The `DM`
5521: Output Parameter:
5522: . ds - The default `PetscDS`
5524: Level: intermediate
5526: Note:
5527: The `ds` is owned by the `dm` and should not be destroyed directly.
5529: .seealso: [](ch_dmbase), `DM`, `DMGetCellDS()`, `DMGetRegionDS()`
5530: @*/
5531: PetscErrorCode DMGetDS(DM dm, PetscDS *ds)
5532: {
5533: PetscFunctionBeginHot;
5535: PetscAssertPointer(ds, 2);
5536: PetscCheck(dm->Nds > 0, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "Need to call DMCreateDS() before calling DMGetDS()");
5537: *ds = dm->probs[0].ds;
5538: PetscFunctionReturn(PETSC_SUCCESS);
5539: }
5541: /*@
5542: DMGetCellDS - Get the `PetscDS` defined on a given cell
5544: Not Collective
5546: Input Parameters:
5547: + dm - The `DM`
5548: - point - Cell for the `PetscDS`
5550: Output Parameters:
5551: + ds - The `PetscDS` defined on the given cell
5552: - dsIn - The `PetscDS` for input on the given cell, or NULL if the same ds
5554: Level: developer
5556: .seealso: [](ch_dmbase), `DM`, `DMGetDS()`, `DMSetRegionDS()`
5557: @*/
5558: PetscErrorCode DMGetCellDS(DM dm, PetscInt point, PetscDS *ds, PetscDS *dsIn)
5559: {
5560: PetscDS dsDef = NULL;
5561: PetscInt s;
5563: PetscFunctionBeginHot;
5565: if (ds) PetscAssertPointer(ds, 3);
5566: if (dsIn) PetscAssertPointer(dsIn, 4);
5567: PetscCheck(point >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Mesh point cannot be negative: %" PetscInt_FMT, point);
5568: if (ds) *ds = NULL;
5569: if (dsIn) *dsIn = NULL;
5570: for (s = 0; s < dm->Nds; ++s) {
5571: PetscInt val;
5573: if (!dm->probs[s].label) {
5574: dsDef = dm->probs[s].ds;
5575: } else {
5576: PetscCall(DMLabelGetValue(dm->probs[s].label, point, &val));
5577: if (val >= 0) {
5578: if (ds) *ds = dm->probs[s].ds;
5579: if (dsIn) *dsIn = dm->probs[s].dsIn;
5580: break;
5581: }
5582: }
5583: }
5584: if (ds && !*ds) *ds = dsDef;
5585: PetscFunctionReturn(PETSC_SUCCESS);
5586: }
5588: /*@
5589: DMGetRegionDS - Get the `PetscDS` for a given mesh region, defined by a `DMLabel`
5591: Not Collective
5593: Input Parameters:
5594: + dm - The `DM`
5595: - label - The `DMLabel` defining the mesh region, or `NULL` for the entire mesh
5597: Output Parameters:
5598: + fields - The `IS` containing the `DM` field numbers for the fields in this `PetscDS`, or `NULL`
5599: . ds - The `PetscDS` defined on the given region, or `NULL`
5600: - dsIn - The `PetscDS` for input in the given region, or `NULL`
5602: Level: advanced
5604: Note:
5605: If a non-`NULL` label is given, but there is no `PetscDS` on that specific label,
5606: the `PetscDS` for the full domain (if present) is returned. Returns with
5607: fields = `NULL` and ds = `NULL` if there is no `PetscDS` for the full domain.
5609: .seealso: [](ch_dmbase), `DM`, `DMGetRegionNumDS()`, `DMSetRegionDS()`, `DMGetDS()`, `DMGetCellDS()`
5610: @*/
5611: PetscErrorCode DMGetRegionDS(DM dm, DMLabel label, IS *fields, PetscDS *ds, PetscDS *dsIn)
5612: {
5613: PetscInt Nds = dm->Nds, s;
5615: PetscFunctionBegin;
5618: if (fields) {
5619: PetscAssertPointer(fields, 3);
5620: *fields = NULL;
5621: }
5622: if (ds) {
5623: PetscAssertPointer(ds, 4);
5624: *ds = NULL;
5625: }
5626: if (dsIn) {
5627: PetscAssertPointer(dsIn, 5);
5628: *dsIn = NULL;
5629: }
5630: for (s = 0; s < Nds; ++s) {
5631: if (dm->probs[s].label == label || !dm->probs[s].label) {
5632: if (fields) *fields = dm->probs[s].fields;
5633: if (ds) *ds = dm->probs[s].ds;
5634: if (dsIn) *dsIn = dm->probs[s].dsIn;
5635: if (dm->probs[s].label) PetscFunctionReturn(PETSC_SUCCESS);
5636: }
5637: }
5638: PetscFunctionReturn(PETSC_SUCCESS);
5639: }
5641: /*@
5642: DMSetRegionDS - Set the `PetscDS` for a given mesh region, defined by a `DMLabel`
5644: Collective
5646: Input Parameters:
5647: + dm - The `DM`
5648: . label - The `DMLabel` defining the mesh region, or `NULL` for the entire mesh
5649: . fields - The `IS` containing the `DM` field numbers for the fields in this `PetscDS`, or `NULL` for all fields
5650: . ds - The `PetscDS` defined on the given region
5651: - dsIn - The `PetscDS` for input on the given cell, or `NULL` if it is the same `PetscDS`
5653: Level: advanced
5655: Note:
5656: If the label has a `PetscDS` defined, it will be replaced. Otherwise, it will be added to the `DM`. If the `PetscDS` is replaced,
5657: the fields argument is ignored.
5659: .seealso: [](ch_dmbase), `DM`, `DMGetRegionDS()`, `DMSetRegionNumDS()`, `DMGetDS()`, `DMGetCellDS()`
5660: @*/
5661: PetscErrorCode DMSetRegionDS(DM dm, DMLabel label, IS fields, PetscDS ds, PetscDS dsIn)
5662: {
5663: PetscInt Nds = dm->Nds, s;
5665: PetscFunctionBegin;
5671: for (s = 0; s < Nds; ++s) {
5672: if (dm->probs[s].label == label) {
5673: PetscCall(PetscDSDestroy(&dm->probs[s].ds));
5674: PetscCall(PetscDSDestroy(&dm->probs[s].dsIn));
5675: dm->probs[s].ds = ds;
5676: dm->probs[s].dsIn = dsIn;
5677: PetscFunctionReturn(PETSC_SUCCESS);
5678: }
5679: }
5680: PetscCall(DMDSEnlarge_Static(dm, Nds + 1));
5681: PetscCall(PetscObjectReference((PetscObject)label));
5682: PetscCall(PetscObjectReference((PetscObject)fields));
5683: PetscCall(PetscObjectReference((PetscObject)ds));
5684: PetscCall(PetscObjectReference((PetscObject)dsIn));
5685: if (!label) {
5686: /* Put the NULL label at the front, so it is returned as the default */
5687: for (s = Nds - 1; s >= 0; --s) dm->probs[s + 1] = dm->probs[s];
5688: Nds = 0;
5689: }
5690: dm->probs[Nds].label = label;
5691: dm->probs[Nds].fields = fields;
5692: dm->probs[Nds].ds = ds;
5693: dm->probs[Nds].dsIn = dsIn;
5694: PetscFunctionReturn(PETSC_SUCCESS);
5695: }
5697: /*@
5698: DMGetRegionNumDS - Get the `PetscDS` for a given mesh region, defined by the region number
5700: Not Collective
5702: Input Parameters:
5703: + dm - The `DM`
5704: - num - The region number, in [0, Nds)
5706: Output Parameters:
5707: + label - The region label, or `NULL`
5708: . fields - The `IS` containing the `DM` field numbers for the fields in this `PetscDS`, or `NULL`
5709: . ds - The `PetscDS` defined on the given region, or `NULL`
5710: - dsIn - The `PetscDS` for input in the given region, or `NULL`
5712: Level: advanced
5714: .seealso: [](ch_dmbase), `DM`, `DMGetRegionDS()`, `DMSetRegionDS()`, `DMGetDS()`, `DMGetCellDS()`
5715: @*/
5716: PetscErrorCode DMGetRegionNumDS(DM dm, PetscInt num, DMLabel *label, IS *fields, PetscDS *ds, PetscDS *dsIn)
5717: {
5718: PetscInt Nds;
5720: PetscFunctionBegin;
5722: PetscCall(DMGetNumDS(dm, &Nds));
5723: PetscCheck((num >= 0) && (num < Nds), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Region number %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", num, Nds);
5724: if (label) {
5725: PetscAssertPointer(label, 3);
5726: *label = dm->probs[num].label;
5727: }
5728: if (fields) {
5729: PetscAssertPointer(fields, 4);
5730: *fields = dm->probs[num].fields;
5731: }
5732: if (ds) {
5733: PetscAssertPointer(ds, 5);
5734: *ds = dm->probs[num].ds;
5735: }
5736: if (dsIn) {
5737: PetscAssertPointer(dsIn, 6);
5738: *dsIn = dm->probs[num].dsIn;
5739: }
5740: PetscFunctionReturn(PETSC_SUCCESS);
5741: }
5743: /*@
5744: DMSetRegionNumDS - Set the `PetscDS` for a given mesh region, defined by the region number
5746: Not Collective
5748: Input Parameters:
5749: + dm - The `DM`
5750: . num - The region number, in [0, Nds)
5751: . label - The region label, or `NULL`
5752: . fields - The `IS` containing the `DM` field numbers for the fields in this `PetscDS`, or `NULL` to prevent setting
5753: . ds - The `PetscDS` defined on the given region, or `NULL` to prevent setting
5754: - dsIn - The `PetscDS` for input on the given cell, or `NULL` if it is the same `PetscDS`
5756: Level: advanced
5758: .seealso: [](ch_dmbase), `DM`, `DMGetRegionDS()`, `DMSetRegionDS()`, `DMGetDS()`, `DMGetCellDS()`
5759: @*/
5760: PetscErrorCode DMSetRegionNumDS(DM dm, PetscInt num, DMLabel label, IS fields, PetscDS ds, PetscDS dsIn)
5761: {
5762: PetscInt Nds;
5764: PetscFunctionBegin;
5767: PetscCall(DMGetNumDS(dm, &Nds));
5768: PetscCheck((num >= 0) && (num < Nds), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Region number %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", num, Nds);
5769: PetscCall(PetscObjectReference((PetscObject)label));
5770: PetscCall(DMLabelDestroy(&dm->probs[num].label));
5771: dm->probs[num].label = label;
5772: if (fields) {
5774: PetscCall(PetscObjectReference((PetscObject)fields));
5775: PetscCall(ISDestroy(&dm->probs[num].fields));
5776: dm->probs[num].fields = fields;
5777: }
5778: if (ds) {
5780: PetscCall(PetscObjectReference((PetscObject)ds));
5781: PetscCall(PetscDSDestroy(&dm->probs[num].ds));
5782: dm->probs[num].ds = ds;
5783: }
5784: if (dsIn) {
5786: PetscCall(PetscObjectReference((PetscObject)dsIn));
5787: PetscCall(PetscDSDestroy(&dm->probs[num].dsIn));
5788: dm->probs[num].dsIn = dsIn;
5789: }
5790: PetscFunctionReturn(PETSC_SUCCESS);
5791: }
5793: /*@
5794: DMFindRegionNum - Find the region number for a given `PetscDS`, or -1 if it is not found.
5796: Not Collective
5798: Input Parameters:
5799: + dm - The `DM`
5800: - ds - The `PetscDS` defined on the given region
5802: Output Parameter:
5803: . num - The region number, in [0, Nds), or -1 if not found
5805: Level: advanced
5807: .seealso: [](ch_dmbase), `DM`, `DMGetRegionNumDS()`, `DMGetRegionDS()`, `DMSetRegionDS()`, `DMGetDS()`, `DMGetCellDS()`
5808: @*/
5809: PetscErrorCode DMFindRegionNum(DM dm, PetscDS ds, PetscInt *num)
5810: {
5811: PetscInt Nds, n;
5813: PetscFunctionBegin;
5816: PetscAssertPointer(num, 3);
5817: PetscCall(DMGetNumDS(dm, &Nds));
5818: for (n = 0; n < Nds; ++n)
5819: if (ds == dm->probs[n].ds) break;
5820: if (n >= Nds) *num = -1;
5821: else *num = n;
5822: PetscFunctionReturn(PETSC_SUCCESS);
5823: }
5825: /*@
5826: DMCreateFEDefault - Create a `PetscFE` based on the celltype for the mesh
5828: Not Collective
5830: Input Parameters:
5831: + dm - The `DM`
5832: . Nc - The number of components for the field
5833: . prefix - The options prefix for the output `PetscFE`, or `NULL`
5834: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
5836: Output Parameter:
5837: . fem - The `PetscFE`
5839: Level: intermediate
5841: Note:
5842: This is a convenience method that just calls `PetscFECreateByCell()` underneath.
5844: .seealso: [](ch_dmbase), `DM`, `PetscFECreateByCell()`, `DMAddField()`, `DMCreateDS()`, `DMGetCellDS()`, `DMGetRegionDS()`
5845: @*/
5846: PetscErrorCode DMCreateFEDefault(DM dm, PetscInt Nc, const char prefix[], PetscInt qorder, PetscFE *fem)
5847: {
5848: DMPolytopeType ct;
5849: PetscInt dim, cStart;
5851: PetscFunctionBegin;
5854: if (prefix) PetscAssertPointer(prefix, 3);
5856: PetscAssertPointer(fem, 5);
5857: PetscCall(DMGetDimension(dm, &dim));
5858: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, NULL));
5859: PetscCall(DMPlexGetCellType(dm, cStart, &ct));
5860: PetscCall(PetscFECreateByCell(PETSC_COMM_SELF, dim, Nc, ct, prefix, qorder, fem));
5861: PetscFunctionReturn(PETSC_SUCCESS);
5862: }
5864: /*@
5865: DMCreateDS - Create the discrete systems for the `DM` based upon the fields added to the `DM`
5867: Collective
5869: Input Parameter:
5870: . dm - The `DM`
5872: Options Database Key:
5873: . -dm_petscds_view - View all the `PetscDS` objects in this `DM`
5875: Level: intermediate
5877: Developer Note:
5878: The name of this function is wrong. Create functions always return the created object as one of the arguments.
5880: .seealso: [](ch_dmbase), `DM`, `DMSetField`, `DMAddField()`, `DMGetDS()`, `DMGetCellDS()`, `DMGetRegionDS()`, `DMSetRegionDS()`
5881: @*/
5882: PetscErrorCode DMCreateDS(DM dm)
5883: {
5884: MPI_Comm comm;
5885: PetscDS dsDef;
5886: DMLabel *labelSet;
5887: PetscInt dE, Nf = dm->Nf, f, s, Nl, l, Ndef, k;
5888: PetscBool doSetup = PETSC_TRUE, flg;
5890: PetscFunctionBegin;
5892: if (!dm->fields) PetscFunctionReturn(PETSC_SUCCESS);
5893: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
5894: PetscCall(DMGetCoordinateDim(dm, &dE));
5895: /* Determine how many regions we have */
5896: PetscCall(PetscMalloc1(Nf, &labelSet));
5897: Nl = 0;
5898: Ndef = 0;
5899: for (f = 0; f < Nf; ++f) {
5900: DMLabel label = dm->fields[f].label;
5901: PetscInt l;
5903: #ifdef PETSC_HAVE_LIBCEED
5904: /* Move CEED context to discretizations */
5905: {
5906: PetscClassId id;
5908: PetscCall(PetscObjectGetClassId(dm->fields[f].disc, &id));
5909: if (id == PETSCFE_CLASSID) {
5910: Ceed ceed;
5912: PetscCall(DMGetCeed(dm, &ceed));
5913: PetscCall(PetscFESetCeed((PetscFE)dm->fields[f].disc, ceed));
5914: }
5915: }
5916: #endif
5917: if (!label) {
5918: ++Ndef;
5919: continue;
5920: }
5921: for (l = 0; l < Nl; ++l)
5922: if (label == labelSet[l]) break;
5923: if (l < Nl) continue;
5924: labelSet[Nl++] = label;
5925: }
5926: /* Create default DS if there are no labels to intersect with */
5927: PetscCall(DMGetRegionDS(dm, NULL, NULL, &dsDef, NULL));
5928: if (!dsDef && Ndef && !Nl) {
5929: IS fields;
5930: PetscInt *fld, nf;
5932: for (f = 0, nf = 0; f < Nf; ++f)
5933: if (!dm->fields[f].label) ++nf;
5934: PetscCheck(nf, comm, PETSC_ERR_PLIB, "All fields have labels, but we are trying to create a default DS");
5935: PetscCall(PetscMalloc1(nf, &fld));
5936: for (f = 0, nf = 0; f < Nf; ++f)
5937: if (!dm->fields[f].label) fld[nf++] = f;
5938: PetscCall(ISCreate(PETSC_COMM_SELF, &fields));
5939: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)fields, "dm_fields_"));
5940: PetscCall(ISSetType(fields, ISGENERAL));
5941: PetscCall(ISGeneralSetIndices(fields, nf, fld, PETSC_OWN_POINTER));
5943: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &dsDef));
5944: PetscCall(DMSetRegionDS(dm, NULL, fields, dsDef, NULL));
5945: PetscCall(PetscDSDestroy(&dsDef));
5946: PetscCall(ISDestroy(&fields));
5947: }
5948: PetscCall(DMGetRegionDS(dm, NULL, NULL, &dsDef, NULL));
5949: if (dsDef) PetscCall(PetscDSSetCoordinateDimension(dsDef, dE));
5950: /* Intersect labels with default fields */
5951: if (Ndef && Nl) {
5952: DM plex;
5953: DMLabel cellLabel;
5954: IS fieldIS, allcellIS, defcellIS = NULL;
5955: PetscInt *fields;
5956: const PetscInt *cells;
5957: PetscInt depth, nf = 0, n, c;
5959: PetscCall(DMConvert(dm, DMPLEX, &plex));
5960: PetscCall(DMPlexGetDepth(plex, &depth));
5961: PetscCall(DMGetStratumIS(plex, "dim", depth, &allcellIS));
5962: if (!allcellIS) PetscCall(DMGetStratumIS(plex, "depth", depth, &allcellIS));
5963: /* TODO This looks like it only works for one label */
5964: for (l = 0; l < Nl; ++l) {
5965: DMLabel label = labelSet[l];
5966: IS pointIS;
5968: PetscCall(ISDestroy(&defcellIS));
5969: PetscCall(DMLabelGetStratumIS(label, 1, &pointIS));
5970: PetscCall(ISDifference(allcellIS, pointIS, &defcellIS));
5971: PetscCall(ISDestroy(&pointIS));
5972: }
5973: PetscCall(ISDestroy(&allcellIS));
5975: PetscCall(DMLabelCreate(PETSC_COMM_SELF, "defaultCells", &cellLabel));
5976: PetscCall(ISGetLocalSize(defcellIS, &n));
5977: PetscCall(ISGetIndices(defcellIS, &cells));
5978: for (c = 0; c < n; ++c) PetscCall(DMLabelSetValue(cellLabel, cells[c], 1));
5979: PetscCall(ISRestoreIndices(defcellIS, &cells));
5980: PetscCall(ISDestroy(&defcellIS));
5981: PetscCall(DMPlexLabelComplete(plex, cellLabel));
5983: PetscCall(PetscMalloc1(Ndef, &fields));
5984: for (f = 0; f < Nf; ++f)
5985: if (!dm->fields[f].label) fields[nf++] = f;
5986: PetscCall(ISCreate(PETSC_COMM_SELF, &fieldIS));
5987: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)fieldIS, "dm_fields_"));
5988: PetscCall(ISSetType(fieldIS, ISGENERAL));
5989: PetscCall(ISGeneralSetIndices(fieldIS, nf, fields, PETSC_OWN_POINTER));
5991: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &dsDef));
5992: PetscCall(DMSetRegionDS(dm, cellLabel, fieldIS, dsDef, NULL));
5993: PetscCall(PetscDSSetCoordinateDimension(dsDef, dE));
5994: PetscCall(DMLabelDestroy(&cellLabel));
5995: PetscCall(PetscDSDestroy(&dsDef));
5996: PetscCall(ISDestroy(&fieldIS));
5997: PetscCall(DMDestroy(&plex));
5998: }
5999: /* Create label DSes
6000: - WE ONLY SUPPORT IDENTICAL OR DISJOINT LABELS
6001: */
6002: /* TODO Should check that labels are disjoint */
6003: for (l = 0; l < Nl; ++l) {
6004: DMLabel label = labelSet[l];
6005: PetscDS ds, dsIn = NULL;
6006: IS fields;
6007: PetscInt *fld, nf;
6009: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &ds));
6010: for (f = 0, nf = 0; f < Nf; ++f)
6011: if (label == dm->fields[f].label || !dm->fields[f].label) ++nf;
6012: PetscCall(PetscMalloc1(nf, &fld));
6013: for (f = 0, nf = 0; f < Nf; ++f)
6014: if (label == dm->fields[f].label || !dm->fields[f].label) fld[nf++] = f;
6015: PetscCall(ISCreate(PETSC_COMM_SELF, &fields));
6016: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)fields, "dm_fields_"));
6017: PetscCall(ISSetType(fields, ISGENERAL));
6018: PetscCall(ISGeneralSetIndices(fields, nf, fld, PETSC_OWN_POINTER));
6019: PetscCall(PetscDSSetCoordinateDimension(ds, dE));
6020: {
6021: DMPolytopeType ct;
6022: PetscInt lStart, lEnd;
6023: PetscBool isCohesiveLocal = PETSC_FALSE, isCohesive;
6025: PetscCall(DMLabelGetBounds(label, &lStart, &lEnd));
6026: if (lStart >= 0) {
6027: PetscCall(DMPlexGetCellType(dm, lStart, &ct));
6028: switch (ct) {
6029: case DM_POLYTOPE_POINT_PRISM_TENSOR:
6030: case DM_POLYTOPE_SEG_PRISM_TENSOR:
6031: case DM_POLYTOPE_TRI_PRISM_TENSOR:
6032: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
6033: isCohesiveLocal = PETSC_TRUE;
6034: break;
6035: default:
6036: break;
6037: }
6038: }
6039: PetscCallMPI(MPIU_Allreduce(&isCohesiveLocal, &isCohesive, 1, MPIU_BOOL, MPI_LOR, comm));
6040: if (isCohesive) {
6041: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &dsIn));
6042: PetscCall(PetscDSSetCoordinateDimension(dsIn, dE));
6043: }
6044: for (f = 0, nf = 0; f < Nf; ++f) {
6045: if (label == dm->fields[f].label || !dm->fields[f].label) {
6046: if (label == dm->fields[f].label) {
6047: PetscCall(PetscDSSetDiscretization(ds, nf, NULL));
6048: PetscCall(PetscDSSetCohesive(ds, nf, isCohesive));
6049: if (dsIn) {
6050: PetscCall(PetscDSSetDiscretization(dsIn, nf, NULL));
6051: PetscCall(PetscDSSetCohesive(dsIn, nf, isCohesive));
6052: }
6053: }
6054: ++nf;
6055: }
6056: }
6057: }
6058: PetscCall(DMSetRegionDS(dm, label, fields, ds, dsIn));
6059: PetscCall(ISDestroy(&fields));
6060: PetscCall(PetscDSDestroy(&ds));
6061: PetscCall(PetscDSDestroy(&dsIn));
6062: }
6063: PetscCall(PetscFree(labelSet));
6064: /* Set fields in DSes */
6065: for (s = 0; s < dm->Nds; ++s) {
6066: PetscDS ds = dm->probs[s].ds;
6067: PetscDS dsIn = dm->probs[s].dsIn;
6068: IS fields = dm->probs[s].fields;
6069: const PetscInt *fld;
6070: PetscInt nf, dsnf;
6071: PetscBool isCohesive;
6073: PetscCall(PetscDSGetNumFields(ds, &dsnf));
6074: PetscCall(PetscDSIsCohesive(ds, &isCohesive));
6075: PetscCall(ISGetLocalSize(fields, &nf));
6076: PetscCall(ISGetIndices(fields, &fld));
6077: for (f = 0; f < nf; ++f) {
6078: PetscObject disc = dm->fields[fld[f]].disc;
6079: PetscBool isCohesiveField;
6080: PetscClassId id;
6082: /* Handle DS with no fields */
6083: if (dsnf) PetscCall(PetscDSGetCohesive(ds, f, &isCohesiveField));
6084: /* If this is a cohesive cell, then regular fields need the lower dimensional discretization */
6085: if (isCohesive) {
6086: if (!isCohesiveField) {
6087: PetscObject bdDisc;
6089: PetscCall(PetscFEGetHeightSubspace((PetscFE)disc, 1, (PetscFE *)&bdDisc));
6090: PetscCall(PetscDSSetDiscretization(ds, f, bdDisc));
6091: PetscCall(PetscDSSetDiscretization(dsIn, f, disc));
6092: } else {
6093: PetscCall(PetscDSSetDiscretization(ds, f, disc));
6094: PetscCall(PetscDSSetDiscretization(dsIn, f, disc));
6095: }
6096: } else {
6097: PetscCall(PetscDSSetDiscretization(ds, f, disc));
6098: }
6099: /* We allow people to have placeholder fields and construct the Section by hand */
6100: PetscCall(PetscObjectGetClassId(disc, &id));
6101: if ((id != PETSCFE_CLASSID) && (id != PETSCFV_CLASSID)) doSetup = PETSC_FALSE;
6102: }
6103: PetscCall(ISRestoreIndices(fields, &fld));
6104: }
6105: /* Allow k-jet tabulation */
6106: PetscCall(PetscOptionsGetInt(NULL, ((PetscObject)dm)->prefix, "-dm_ds_jet_degree", &k, &flg));
6107: if (flg) {
6108: for (s = 0; s < dm->Nds; ++s) {
6109: PetscDS ds = dm->probs[s].ds;
6110: PetscDS dsIn = dm->probs[s].dsIn;
6111: PetscInt Nf, f;
6113: PetscCall(PetscDSGetNumFields(ds, &Nf));
6114: for (f = 0; f < Nf; ++f) {
6115: PetscCall(PetscDSSetJetDegree(ds, f, k));
6116: if (dsIn) PetscCall(PetscDSSetJetDegree(dsIn, f, k));
6117: }
6118: }
6119: }
6120: /* Setup DSes */
6121: if (doSetup) {
6122: for (s = 0; s < dm->Nds; ++s) {
6123: if (dm->setfromoptionscalled) {
6124: PetscCall(PetscDSSetFromOptions(dm->probs[s].ds));
6125: if (dm->probs[s].dsIn) PetscCall(PetscDSSetFromOptions(dm->probs[s].dsIn));
6126: }
6127: PetscCall(PetscDSSetUp(dm->probs[s].ds));
6128: if (dm->probs[s].dsIn) PetscCall(PetscDSSetUp(dm->probs[s].dsIn));
6129: }
6130: }
6131: PetscFunctionReturn(PETSC_SUCCESS);
6132: }
6134: /*@
6135: DMUseTensorOrder - Use a tensor product closure ordering for the default section
6137: Input Parameters:
6138: + dm - The DM
6139: - tensor - Flag for tensor order
6141: Level: developer
6143: .seealso: `DMPlexSetClosurePermutationTensor()`, `PetscSectionResetClosurePermutation()`
6144: @*/
6145: PetscErrorCode DMUseTensorOrder(DM dm, PetscBool tensor)
6146: {
6147: PetscInt Nf;
6148: PetscBool reorder = PETSC_TRUE, isPlex;
6150: PetscFunctionBegin;
6151: PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
6152: PetscCall(DMGetNumFields(dm, &Nf));
6153: for (PetscInt f = 0; f < Nf; ++f) {
6154: PetscObject obj;
6155: PetscClassId id;
6157: PetscCall(DMGetField(dm, f, NULL, &obj));
6158: PetscCall(PetscObjectGetClassId(obj, &id));
6159: if (id == PETSCFE_CLASSID) {
6160: PetscSpace sp;
6161: PetscBool tensor;
6163: PetscCall(PetscFEGetBasisSpace((PetscFE)obj, &sp));
6164: PetscCall(PetscSpacePolynomialGetTensor(sp, &tensor));
6165: reorder = reorder && tensor ? PETSC_TRUE : PETSC_FALSE;
6166: } else reorder = PETSC_FALSE;
6167: }
6168: if (tensor) {
6169: if (reorder && isPlex) PetscCall(DMPlexSetClosurePermutationTensor(dm, PETSC_DETERMINE, NULL));
6170: } else {
6171: PetscSection s;
6173: PetscCall(DMGetLocalSection(dm, &s));
6174: if (s) PetscCall(PetscSectionResetClosurePermutation(s));
6175: }
6176: PetscFunctionReturn(PETSC_SUCCESS);
6177: }
6179: /*@
6180: DMComputeExactSolution - Compute the exact solution for a given `DM`, using the `PetscDS` information.
6182: Collective
6184: Input Parameters:
6185: + dm - The `DM`
6186: - time - The time
6188: Output Parameters:
6189: + u - The vector will be filled with exact solution values, or `NULL`
6190: - u_t - The vector will be filled with the time derivative of exact solution values, or `NULL`
6192: Level: developer
6194: Note:
6195: The user must call `PetscDSSetExactSolution()` before using this routine
6197: .seealso: [](ch_dmbase), `DM`, `PetscDSSetExactSolution()`
6198: @*/
6199: PetscErrorCode DMComputeExactSolution(DM dm, PetscReal time, Vec u, Vec u_t)
6200: {
6201: PetscErrorCode (**exacts)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
6202: void **ectxs;
6203: Vec locu, locu_t;
6204: PetscInt Nf, Nds, s;
6206: PetscFunctionBegin;
6208: if (u) {
6210: PetscCall(DMGetLocalVector(dm, &locu));
6211: PetscCall(VecSet(locu, 0.));
6212: }
6213: if (u_t) {
6215: PetscCall(DMGetLocalVector(dm, &locu_t));
6216: PetscCall(VecSet(locu_t, 0.));
6217: }
6218: PetscCall(DMGetNumFields(dm, &Nf));
6219: PetscCall(PetscMalloc2(Nf, &exacts, Nf, &ectxs));
6220: PetscCall(DMGetNumDS(dm, &Nds));
6221: for (s = 0; s < Nds; ++s) {
6222: PetscDS ds;
6223: DMLabel label;
6224: IS fieldIS;
6225: const PetscInt *fields, id = 1;
6226: PetscInt dsNf, f;
6228: PetscCall(DMGetRegionNumDS(dm, s, &label, &fieldIS, &ds, NULL));
6229: PetscCall(PetscDSGetNumFields(ds, &dsNf));
6230: PetscCall(ISGetIndices(fieldIS, &fields));
6231: PetscCall(PetscArrayzero(exacts, Nf));
6232: PetscCall(PetscArrayzero(ectxs, Nf));
6233: if (u) {
6234: for (f = 0; f < dsNf; ++f) PetscCall(PetscDSGetExactSolution(ds, fields[f], &exacts[fields[f]], &ectxs[fields[f]]));
6235: if (label) PetscCall(DMProjectFunctionLabelLocal(dm, time, label, 1, &id, 0, NULL, exacts, ectxs, INSERT_ALL_VALUES, locu));
6236: else PetscCall(DMProjectFunctionLocal(dm, time, exacts, ectxs, INSERT_ALL_VALUES, locu));
6237: }
6238: if (u_t) {
6239: PetscCall(PetscArrayzero(exacts, Nf));
6240: PetscCall(PetscArrayzero(ectxs, Nf));
6241: for (f = 0; f < dsNf; ++f) PetscCall(PetscDSGetExactSolutionTimeDerivative(ds, fields[f], &exacts[fields[f]], &ectxs[fields[f]]));
6242: if (label) PetscCall(DMProjectFunctionLabelLocal(dm, time, label, 1, &id, 0, NULL, exacts, ectxs, INSERT_ALL_VALUES, locu_t));
6243: else PetscCall(DMProjectFunctionLocal(dm, time, exacts, ectxs, INSERT_ALL_VALUES, locu_t));
6244: }
6245: PetscCall(ISRestoreIndices(fieldIS, &fields));
6246: }
6247: if (u) {
6248: PetscCall(PetscObjectSetName((PetscObject)u, "Exact Solution"));
6249: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)u, "exact_"));
6250: }
6251: if (u_t) {
6252: PetscCall(PetscObjectSetName((PetscObject)u, "Exact Solution Time Derivative"));
6253: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)u_t, "exact_t_"));
6254: }
6255: PetscCall(PetscFree2(exacts, ectxs));
6256: if (u) {
6257: PetscCall(DMLocalToGlobalBegin(dm, locu, INSERT_ALL_VALUES, u));
6258: PetscCall(DMLocalToGlobalEnd(dm, locu, INSERT_ALL_VALUES, u));
6259: PetscCall(DMRestoreLocalVector(dm, &locu));
6260: }
6261: if (u_t) {
6262: PetscCall(DMLocalToGlobalBegin(dm, locu_t, INSERT_ALL_VALUES, u_t));
6263: PetscCall(DMLocalToGlobalEnd(dm, locu_t, INSERT_ALL_VALUES, u_t));
6264: PetscCall(DMRestoreLocalVector(dm, &locu_t));
6265: }
6266: PetscFunctionReturn(PETSC_SUCCESS);
6267: }
6269: static PetscErrorCode DMTransferDS_Internal(DM dm, DMLabel label, IS fields, PetscInt minDegree, PetscInt maxDegree, PetscDS ds, PetscDS dsIn)
6270: {
6271: PetscDS dsNew, dsInNew = NULL;
6273: PetscFunctionBegin;
6274: PetscCall(PetscDSCreate(PetscObjectComm((PetscObject)ds), &dsNew));
6275: PetscCall(PetscDSCopy(ds, minDegree, maxDegree, dm, dsNew));
6276: if (dsIn) {
6277: PetscCall(PetscDSCreate(PetscObjectComm((PetscObject)dsIn), &dsInNew));
6278: PetscCall(PetscDSCopy(dsIn, minDegree, maxDegree, dm, dsInNew));
6279: }
6280: PetscCall(DMSetRegionDS(dm, label, fields, dsNew, dsInNew));
6281: PetscCall(PetscDSDestroy(&dsNew));
6282: PetscCall(PetscDSDestroy(&dsInNew));
6283: PetscFunctionReturn(PETSC_SUCCESS);
6284: }
6286: /*@
6287: DMCopyDS - Copy the discrete systems for the `DM` into another `DM`
6289: Collective
6291: Input Parameters:
6292: + dm - The `DM`
6293: . minDegree - Minimum degree for a discretization, or `PETSC_DETERMINE` for no limit
6294: - maxDegree - Maximum degree for a discretization, or `PETSC_DETERMINE` for no limit
6296: Output Parameter:
6297: . newdm - The `DM`
6299: Level: advanced
6301: .seealso: [](ch_dmbase), `DM`, `DMCopyFields()`, `DMAddField()`, `DMGetDS()`, `DMGetCellDS()`, `DMGetRegionDS()`, `DMSetRegionDS()`
6302: @*/
6303: PetscErrorCode DMCopyDS(DM dm, PetscInt minDegree, PetscInt maxDegree, DM newdm)
6304: {
6305: PetscInt Nds, s;
6307: PetscFunctionBegin;
6308: if (dm == newdm) PetscFunctionReturn(PETSC_SUCCESS);
6309: PetscCall(DMGetNumDS(dm, &Nds));
6310: PetscCall(DMClearDS(newdm));
6311: for (s = 0; s < Nds; ++s) {
6312: DMLabel label;
6313: IS fields;
6314: PetscDS ds, dsIn, newds;
6315: PetscInt Nbd, bd;
6317: PetscCall(DMGetRegionNumDS(dm, s, &label, &fields, &ds, &dsIn));
6318: /* TODO: We need to change all keys from labels in the old DM to labels in the new DM */
6319: PetscCall(DMTransferDS_Internal(newdm, label, fields, minDegree, maxDegree, ds, dsIn));
6320: /* Complete new labels in the new DS */
6321: PetscCall(DMGetRegionDS(newdm, label, NULL, &newds, NULL));
6322: PetscCall(PetscDSGetNumBoundary(newds, &Nbd));
6323: for (bd = 0; bd < Nbd; ++bd) {
6324: PetscWeakForm wf;
6325: DMLabel label;
6326: PetscInt field;
6328: PetscCall(PetscDSGetBoundary(newds, bd, &wf, NULL, NULL, &label, NULL, NULL, &field, NULL, NULL, NULL, NULL, NULL));
6329: PetscCall(PetscWeakFormReplaceLabel(wf, label));
6330: }
6331: }
6332: PetscCall(DMCompleteBCLabels_Internal(newdm));
6333: PetscFunctionReturn(PETSC_SUCCESS);
6334: }
6336: /*@
6337: DMCopyDisc - Copy the fields and discrete systems for the `DM` into another `DM`
6339: Collective
6341: Input Parameter:
6342: . dm - The `DM`
6344: Output Parameter:
6345: . newdm - The `DM`
6347: Level: advanced
6349: Developer Note:
6350: Really ugly name, nothing in PETSc is called a `Disc` plus it is an ugly abbreviation
6352: .seealso: [](ch_dmbase), `DM`, `DMCopyFields()`, `DMCopyDS()`
6353: @*/
6354: PetscErrorCode DMCopyDisc(DM dm, DM newdm)
6355: {
6356: PetscFunctionBegin;
6357: PetscCall(DMCopyFields(dm, PETSC_DETERMINE, PETSC_DETERMINE, newdm));
6358: PetscCall(DMCopyDS(dm, PETSC_DETERMINE, PETSC_DETERMINE, newdm));
6359: PetscFunctionReturn(PETSC_SUCCESS);
6360: }
6362: /*@
6363: DMGetDimension - Return the topological dimension of the `DM`
6365: Not Collective
6367: Input Parameter:
6368: . dm - The `DM`
6370: Output Parameter:
6371: . dim - The topological dimension
6373: Level: beginner
6375: .seealso: [](ch_dmbase), `DM`, `DMSetDimension()`, `DMCreate()`
6376: @*/
6377: PetscErrorCode DMGetDimension(DM dm, PetscInt *dim)
6378: {
6379: PetscFunctionBegin;
6381: PetscAssertPointer(dim, 2);
6382: *dim = dm->dim;
6383: PetscFunctionReturn(PETSC_SUCCESS);
6384: }
6386: /*@
6387: DMSetDimension - Set the topological dimension of the `DM`
6389: Collective
6391: Input Parameters:
6392: + dm - The `DM`
6393: - dim - The topological dimension
6395: Level: beginner
6397: .seealso: [](ch_dmbase), `DM`, `DMGetDimension()`, `DMCreate()`
6398: @*/
6399: PetscErrorCode DMSetDimension(DM dm, PetscInt dim)
6400: {
6401: PetscDS ds;
6402: PetscInt Nds, n;
6404: PetscFunctionBegin;
6407: dm->dim = dim;
6408: if (dm->dim >= 0) {
6409: PetscCall(DMGetNumDS(dm, &Nds));
6410: for (n = 0; n < Nds; ++n) {
6411: PetscCall(DMGetRegionNumDS(dm, n, NULL, NULL, &ds, NULL));
6412: if (ds->dimEmbed < 0) PetscCall(PetscDSSetCoordinateDimension(ds, dim));
6413: }
6414: }
6415: PetscFunctionReturn(PETSC_SUCCESS);
6416: }
6418: /*@
6419: DMGetDimPoints - Get the half-open interval for all points of a given dimension
6421: Collective
6423: Input Parameters:
6424: + dm - the `DM`
6425: - dim - the dimension
6427: Output Parameters:
6428: + pStart - The first point of the given dimension
6429: - pEnd - The first point following points of the given dimension
6431: Level: intermediate
6433: Note:
6434: The points are vertices in the Hasse diagram encoding the topology. This is explained in
6435: https://arxiv.org/abs/0908.4427. If no points exist of this dimension in the storage scheme,
6436: then the interval is empty.
6438: .seealso: [](ch_dmbase), `DM`, `DMPLEX`, `DMPlexGetDepthStratum()`, `DMPlexGetHeightStratum()`
6439: @*/
6440: PetscErrorCode DMGetDimPoints(DM dm, PetscInt dim, PetscInt *pStart, PetscInt *pEnd)
6441: {
6442: PetscInt d;
6444: PetscFunctionBegin;
6446: PetscCall(DMGetDimension(dm, &d));
6447: PetscCheck((dim >= 0) && (dim <= d), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %" PetscInt_FMT, dim);
6448: PetscUseTypeMethod(dm, getdimpoints, dim, pStart, pEnd);
6449: PetscFunctionReturn(PETSC_SUCCESS);
6450: }
6452: /*@
6453: DMGetOutputDM - Retrieve the `DM` associated with the layout for output
6455: Collective
6457: Input Parameter:
6458: . dm - The original `DM`
6460: Output Parameter:
6461: . odm - The `DM` which provides the layout for output
6463: Level: intermediate
6465: Note:
6466: In some situations the vector obtained with `DMCreateGlobalVector()` excludes points for degrees of freedom that are associated with fixed (Dirichelet) boundary
6467: conditions since the algebraic solver does not solve for those variables. The output `DM` includes these excluded points and its global vector contains the
6468: locations for those dof so that they can be output to a file or other viewer along with the unconstrained dof.
6470: .seealso: [](ch_dmbase), `DM`, `VecView()`, `DMGetGlobalSection()`, `DMCreateGlobalVector()`, `PetscSectionHasConstraints()`, `DMSetGlobalSection()`
6471: @*/
6472: PetscErrorCode DMGetOutputDM(DM dm, DM *odm)
6473: {
6474: PetscSection section;
6475: IS perm;
6476: PetscBool hasConstraints, newDM, gnewDM;
6477: PetscInt num_face_sfs = 0;
6479: PetscFunctionBegin;
6481: PetscAssertPointer(odm, 2);
6482: PetscCall(DMGetLocalSection(dm, §ion));
6483: PetscCall(PetscSectionHasConstraints(section, &hasConstraints));
6484: PetscCall(PetscSectionGetPermutation(section, &perm));
6485: PetscCall(DMPlexGetIsoperiodicFaceSF(dm, &num_face_sfs, NULL));
6486: newDM = hasConstraints || perm || (num_face_sfs > 0) ? PETSC_TRUE : PETSC_FALSE;
6487: PetscCallMPI(MPIU_Allreduce(&newDM, &gnewDM, 1, MPIU_BOOL, MPI_LOR, PetscObjectComm((PetscObject)dm)));
6488: if (!gnewDM) {
6489: *odm = dm;
6490: PetscFunctionReturn(PETSC_SUCCESS);
6491: }
6492: if (!dm->dmBC) {
6493: PetscSection newSection, gsection;
6494: PetscSF sf, sfNatural;
6495: PetscBool usePerm = dm->ignorePermOutput ? PETSC_FALSE : PETSC_TRUE;
6497: PetscCall(DMClone(dm, &dm->dmBC));
6498: PetscCall(DMCopyDisc(dm, dm->dmBC));
6499: PetscCall(PetscSectionClone(section, &newSection));
6500: PetscCall(DMSetLocalSection(dm->dmBC, newSection));
6501: PetscCall(PetscSectionDestroy(&newSection));
6502: PetscCall(DMGetNaturalSF(dm, &sfNatural));
6503: PetscCall(DMSetNaturalSF(dm->dmBC, sfNatural));
6504: PetscCall(DMGetPointSF(dm->dmBC, &sf));
6505: PetscCall(PetscSectionCreateGlobalSection(section, sf, usePerm, PETSC_TRUE, PETSC_FALSE, &gsection));
6506: PetscCall(DMSetGlobalSection(dm->dmBC, gsection));
6507: PetscCall(PetscSectionDestroy(&gsection));
6508: }
6509: *odm = dm->dmBC;
6510: PetscFunctionReturn(PETSC_SUCCESS);
6511: }
6513: /*@
6514: DMGetOutputSequenceNumber - Retrieve the sequence number/value for output
6516: Input Parameter:
6517: . dm - The original `DM`
6519: Output Parameters:
6520: + num - The output sequence number
6521: - val - The output sequence value
6523: Level: intermediate
6525: Note:
6526: This is intended for output that should appear in sequence, for instance
6527: a set of timesteps in an `PETSCVIEWERHDF5` file, or a set of realizations of a stochastic system.
6529: Developer Note:
6530: The `DM` serves as a convenient place to store the current iteration value. The iteration is not
6531: not directly related to the `DM`.
6533: .seealso: [](ch_dmbase), `DM`, `VecView()`
6534: @*/
6535: PetscErrorCode DMGetOutputSequenceNumber(DM dm, PetscInt *num, PetscReal *val)
6536: {
6537: PetscFunctionBegin;
6539: if (num) {
6540: PetscAssertPointer(num, 2);
6541: *num = dm->outputSequenceNum;
6542: }
6543: if (val) {
6544: PetscAssertPointer(val, 3);
6545: *val = dm->outputSequenceVal;
6546: }
6547: PetscFunctionReturn(PETSC_SUCCESS);
6548: }
6550: /*@
6551: DMSetOutputSequenceNumber - Set the sequence number/value for output
6553: Input Parameters:
6554: + dm - The original `DM`
6555: . num - The output sequence number
6556: - val - The output sequence value
6558: Level: intermediate
6560: Note:
6561: This is intended for output that should appear in sequence, for instance
6562: a set of timesteps in an `PETSCVIEWERHDF5` file, or a set of realizations of a stochastic system.
6564: .seealso: [](ch_dmbase), `DM`, `VecView()`
6565: @*/
6566: PetscErrorCode DMSetOutputSequenceNumber(DM dm, PetscInt num, PetscReal val)
6567: {
6568: PetscFunctionBegin;
6570: dm->outputSequenceNum = num;
6571: dm->outputSequenceVal = val;
6572: PetscFunctionReturn(PETSC_SUCCESS);
6573: }
6575: /*@
6576: DMOutputSequenceLoad - Retrieve the sequence value from a `PetscViewer`
6578: Input Parameters:
6579: + dm - The original `DM`
6580: . viewer - The `PetscViewer` to get it from
6581: . name - The sequence name
6582: - num - The output sequence number
6584: Output Parameter:
6585: . val - The output sequence value
6587: Level: intermediate
6589: Note:
6590: This is intended for output that should appear in sequence, for instance
6591: a set of timesteps in an `PETSCVIEWERHDF5` file, or a set of realizations of a stochastic system.
6593: Developer Note:
6594: It is unclear at the user API level why a `DM` is needed as input
6596: .seealso: [](ch_dmbase), `DM`, `DMGetOutputSequenceNumber()`, `DMSetOutputSequenceNumber()`, `VecView()`
6597: @*/
6598: PetscErrorCode DMOutputSequenceLoad(DM dm, PetscViewer viewer, const char name[], PetscInt num, PetscReal *val)
6599: {
6600: PetscBool ishdf5;
6602: PetscFunctionBegin;
6605: PetscAssertPointer(name, 3);
6606: PetscAssertPointer(val, 5);
6607: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
6608: if (ishdf5) {
6609: #if defined(PETSC_HAVE_HDF5)
6610: PetscScalar value;
6612: PetscCall(DMSequenceLoad_HDF5_Internal(dm, name, num, &value, viewer));
6613: *val = PetscRealPart(value);
6614: #endif
6615: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerHDF5Open()");
6616: PetscFunctionReturn(PETSC_SUCCESS);
6617: }
6619: /*@
6620: DMGetOutputSequenceLength - Retrieve the number of sequence values from a `PetscViewer`
6622: Input Parameters:
6623: + dm - The original `DM`
6624: . viewer - The `PetscViewer` to get it from
6625: - name - The sequence name
6627: Output Parameter:
6628: . len - The length of the output sequence
6630: Level: intermediate
6632: Note:
6633: This is intended for output that should appear in sequence, for instance
6634: a set of timesteps in an `PETSCVIEWERHDF5` file, or a set of realizations of a stochastic system.
6636: Developer Note:
6637: It is unclear at the user API level why a `DM` is needed as input
6639: .seealso: [](ch_dmbase), `DM`, `DMGetOutputSequenceNumber()`, `DMSetOutputSequenceNumber()`, `VecView()`
6640: @*/
6641: PetscErrorCode DMGetOutputSequenceLength(DM dm, PetscViewer viewer, const char name[], PetscInt *len)
6642: {
6643: PetscBool ishdf5;
6645: PetscFunctionBegin;
6648: PetscAssertPointer(name, 3);
6649: PetscAssertPointer(len, 4);
6650: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
6651: if (ishdf5) {
6652: #if defined(PETSC_HAVE_HDF5)
6653: PetscCall(DMSequenceGetLength_HDF5_Internal(dm, name, len, viewer));
6654: #endif
6655: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerHDF5Open()");
6656: PetscFunctionReturn(PETSC_SUCCESS);
6657: }
6659: /*@
6660: DMGetUseNatural - Get the flag for creating a mapping to the natural order when a `DM` is (re)distributed in parallel
6662: Not Collective
6664: Input Parameter:
6665: . dm - The `DM`
6667: Output Parameter:
6668: . useNatural - `PETSC_TRUE` to build the mapping to a natural order during distribution
6670: Level: beginner
6672: .seealso: [](ch_dmbase), `DM`, `DMSetUseNatural()`, `DMCreate()`
6673: @*/
6674: PetscErrorCode DMGetUseNatural(DM dm, PetscBool *useNatural)
6675: {
6676: PetscFunctionBegin;
6678: PetscAssertPointer(useNatural, 2);
6679: *useNatural = dm->useNatural;
6680: PetscFunctionReturn(PETSC_SUCCESS);
6681: }
6683: /*@
6684: DMSetUseNatural - Set the flag for creating a mapping to the natural order when a `DM` is (re)distributed in parallel
6686: Collective
6688: Input Parameters:
6689: + dm - The `DM`
6690: - useNatural - `PETSC_TRUE` to build the mapping to a natural order during distribution
6692: Level: beginner
6694: Note:
6695: This also causes the map to be build after `DMCreateSubDM()` and `DMCreateSuperDM()`
6697: .seealso: [](ch_dmbase), `DM`, `DMGetUseNatural()`, `DMCreate()`, `DMPlexDistribute()`, `DMCreateSubDM()`, `DMCreateSuperDM()`
6698: @*/
6699: PetscErrorCode DMSetUseNatural(DM dm, PetscBool useNatural)
6700: {
6701: PetscFunctionBegin;
6704: dm->useNatural = useNatural;
6705: PetscFunctionReturn(PETSC_SUCCESS);
6706: }
6708: /*@
6709: DMCreateLabel - Create a label of the given name if it does not already exist in the `DM`
6711: Not Collective
6713: Input Parameters:
6714: + dm - The `DM` object
6715: - name - The label name
6717: Level: intermediate
6719: .seealso: [](ch_dmbase), `DM`, `DMLabelCreate()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
6720: @*/
6721: PetscErrorCode DMCreateLabel(DM dm, const char name[])
6722: {
6723: PetscBool flg;
6724: DMLabel label;
6726: PetscFunctionBegin;
6728: PetscAssertPointer(name, 2);
6729: PetscCall(DMHasLabel(dm, name, &flg));
6730: if (!flg) {
6731: PetscCall(DMLabelCreate(PETSC_COMM_SELF, name, &label));
6732: PetscCall(DMAddLabel(dm, label));
6733: PetscCall(DMLabelDestroy(&label));
6734: }
6735: PetscFunctionReturn(PETSC_SUCCESS);
6736: }
6738: /*@
6739: DMCreateLabelAtIndex - Create a label of the given name at the given index. If it already exists in the `DM`, move it to this index.
6741: Not Collective
6743: Input Parameters:
6744: + dm - The `DM` object
6745: . l - The index for the label
6746: - name - The label name
6748: Level: intermediate
6750: .seealso: [](ch_dmbase), `DM`, `DMCreateLabel()`, `DMLabelCreate()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
6751: @*/
6752: PetscErrorCode DMCreateLabelAtIndex(DM dm, PetscInt l, const char name[])
6753: {
6754: DMLabelLink orig, prev = NULL;
6755: DMLabel label;
6756: PetscInt Nl, m;
6757: PetscBool flg, match;
6758: const char *lname;
6760: PetscFunctionBegin;
6762: PetscAssertPointer(name, 3);
6763: PetscCall(DMHasLabel(dm, name, &flg));
6764: if (!flg) {
6765: PetscCall(DMLabelCreate(PETSC_COMM_SELF, name, &label));
6766: PetscCall(DMAddLabel(dm, label));
6767: PetscCall(DMLabelDestroy(&label));
6768: }
6769: PetscCall(DMGetNumLabels(dm, &Nl));
6770: PetscCheck(l < Nl, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Label index %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", l, Nl);
6771: for (m = 0, orig = dm->labels; m < Nl; ++m, prev = orig, orig = orig->next) {
6772: PetscCall(PetscObjectGetName((PetscObject)orig->label, &lname));
6773: PetscCall(PetscStrcmp(name, lname, &match));
6774: if (match) break;
6775: }
6776: if (m == l) PetscFunctionReturn(PETSC_SUCCESS);
6777: if (!m) dm->labels = orig->next;
6778: else prev->next = orig->next;
6779: if (!l) {
6780: orig->next = dm->labels;
6781: dm->labels = orig;
6782: } else {
6783: for (m = 0, prev = dm->labels; m < l - 1; ++m, prev = prev->next);
6784: orig->next = prev->next;
6785: prev->next = orig;
6786: }
6787: PetscFunctionReturn(PETSC_SUCCESS);
6788: }
6790: /*@
6791: DMGetLabelValue - Get the value in a `DMLabel` for the given point, with -1 as the default
6793: Not Collective
6795: Input Parameters:
6796: + dm - The `DM` object
6797: . name - The label name
6798: - point - The mesh point
6800: Output Parameter:
6801: . value - The label value for this point, or -1 if the point is not in the label
6803: Level: beginner
6805: .seealso: [](ch_dmbase), `DM`, `DMLabelGetValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
6806: @*/
6807: PetscErrorCode DMGetLabelValue(DM dm, const char name[], PetscInt point, PetscInt *value)
6808: {
6809: DMLabel label;
6811: PetscFunctionBegin;
6813: PetscAssertPointer(name, 2);
6814: PetscCall(DMGetLabel(dm, name, &label));
6815: PetscCheck(label, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "No label named %s was found", name);
6816: PetscCall(DMLabelGetValue(label, point, value));
6817: PetscFunctionReturn(PETSC_SUCCESS);
6818: }
6820: /*@
6821: DMSetLabelValue - Add a point to a `DMLabel` with given value
6823: Not Collective
6825: Input Parameters:
6826: + dm - The `DM` object
6827: . name - The label name
6828: . point - The mesh point
6829: - value - The label value for this point
6831: Output Parameter:
6833: Level: beginner
6835: .seealso: [](ch_dmbase), `DM`, `DMLabelSetValue()`, `DMGetStratumIS()`, `DMClearLabelValue()`
6836: @*/
6837: PetscErrorCode DMSetLabelValue(DM dm, const char name[], PetscInt point, PetscInt value)
6838: {
6839: DMLabel label;
6841: PetscFunctionBegin;
6843: PetscAssertPointer(name, 2);
6844: PetscCall(DMGetLabel(dm, name, &label));
6845: if (!label) {
6846: PetscCall(DMCreateLabel(dm, name));
6847: PetscCall(DMGetLabel(dm, name, &label));
6848: }
6849: PetscCall(DMLabelSetValue(label, point, value));
6850: PetscFunctionReturn(PETSC_SUCCESS);
6851: }
6853: /*@
6854: DMClearLabelValue - Remove a point from a `DMLabel` with given value
6856: Not Collective
6858: Input Parameters:
6859: + dm - The `DM` object
6860: . name - The label name
6861: . point - The mesh point
6862: - value - The label value for this point
6864: Level: beginner
6866: .seealso: [](ch_dmbase), `DM`, `DMLabelClearValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
6867: @*/
6868: PetscErrorCode DMClearLabelValue(DM dm, const char name[], PetscInt point, PetscInt value)
6869: {
6870: DMLabel label;
6872: PetscFunctionBegin;
6874: PetscAssertPointer(name, 2);
6875: PetscCall(DMGetLabel(dm, name, &label));
6876: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
6877: PetscCall(DMLabelClearValue(label, point, value));
6878: PetscFunctionReturn(PETSC_SUCCESS);
6879: }
6881: /*@
6882: DMGetLabelSize - Get the value of `DMLabelGetNumValues()` of a `DMLabel` in the `DM`
6884: Not Collective
6886: Input Parameters:
6887: + dm - The `DM` object
6888: - name - The label name
6890: Output Parameter:
6891: . size - The number of different integer ids, or 0 if the label does not exist
6893: Level: beginner
6895: Developer Note:
6896: This should be renamed to something like `DMGetLabelNumValues()` or removed.
6898: .seealso: [](ch_dmbase), `DM`, `DMLabelGetNumValues()`, `DMSetLabelValue()`, `DMGetLabel()`
6899: @*/
6900: PetscErrorCode DMGetLabelSize(DM dm, const char name[], PetscInt *size)
6901: {
6902: DMLabel label;
6904: PetscFunctionBegin;
6906: PetscAssertPointer(name, 2);
6907: PetscAssertPointer(size, 3);
6908: PetscCall(DMGetLabel(dm, name, &label));
6909: *size = 0;
6910: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
6911: PetscCall(DMLabelGetNumValues(label, size));
6912: PetscFunctionReturn(PETSC_SUCCESS);
6913: }
6915: /*@
6916: DMGetLabelIdIS - Get the `DMLabelGetValueIS()` from a `DMLabel` in the `DM`
6918: Not Collective
6920: Input Parameters:
6921: + dm - The `DM` object
6922: - name - The label name
6924: Output Parameter:
6925: . ids - The integer ids, or `NULL` if the label does not exist
6927: Level: beginner
6929: .seealso: [](ch_dmbase), `DM`, `DMLabelGetValueIS()`, `DMGetLabelSize()`
6930: @*/
6931: PetscErrorCode DMGetLabelIdIS(DM dm, const char name[], IS *ids)
6932: {
6933: DMLabel label;
6935: PetscFunctionBegin;
6937: PetscAssertPointer(name, 2);
6938: PetscAssertPointer(ids, 3);
6939: PetscCall(DMGetLabel(dm, name, &label));
6940: *ids = NULL;
6941: if (label) {
6942: PetscCall(DMLabelGetValueIS(label, ids));
6943: } else {
6944: /* returning an empty IS */
6945: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 0, NULL, PETSC_USE_POINTER, ids));
6946: }
6947: PetscFunctionReturn(PETSC_SUCCESS);
6948: }
6950: /*@
6951: DMGetStratumSize - Get the number of points in a label stratum
6953: Not Collective
6955: Input Parameters:
6956: + dm - The `DM` object
6957: . name - The label name of the stratum
6958: - value - The stratum value
6960: Output Parameter:
6961: . size - The number of points, also called the stratum size
6963: Level: beginner
6965: .seealso: [](ch_dmbase), `DM`, `DMLabelGetStratumSize()`, `DMGetLabelSize()`, `DMGetLabelIds()`
6966: @*/
6967: PetscErrorCode DMGetStratumSize(DM dm, const char name[], PetscInt value, PetscInt *size)
6968: {
6969: DMLabel label;
6971: PetscFunctionBegin;
6973: PetscAssertPointer(name, 2);
6974: PetscAssertPointer(size, 4);
6975: PetscCall(DMGetLabel(dm, name, &label));
6976: *size = 0;
6977: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
6978: PetscCall(DMLabelGetStratumSize(label, value, size));
6979: PetscFunctionReturn(PETSC_SUCCESS);
6980: }
6982: /*@
6983: DMGetStratumIS - Get the points in a label stratum
6985: Not Collective
6987: Input Parameters:
6988: + dm - The `DM` object
6989: . name - The label name
6990: - value - The stratum value
6992: Output Parameter:
6993: . points - The stratum points, or `NULL` if the label does not exist or does not have that value
6995: Level: beginner
6997: .seealso: [](ch_dmbase), `DM`, `DMLabelGetStratumIS()`, `DMGetStratumSize()`
6998: @*/
6999: PetscErrorCode DMGetStratumIS(DM dm, const char name[], PetscInt value, IS *points)
7000: {
7001: DMLabel label;
7003: PetscFunctionBegin;
7005: PetscAssertPointer(name, 2);
7006: PetscAssertPointer(points, 4);
7007: PetscCall(DMGetLabel(dm, name, &label));
7008: *points = NULL;
7009: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
7010: PetscCall(DMLabelGetStratumIS(label, value, points));
7011: PetscFunctionReturn(PETSC_SUCCESS);
7012: }
7014: /*@
7015: DMSetStratumIS - Set the points in a label stratum
7017: Not Collective
7019: Input Parameters:
7020: + dm - The `DM` object
7021: . name - The label name
7022: . value - The stratum value
7023: - points - The stratum points
7025: Level: beginner
7027: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMClearLabelStratum()`, `DMLabelClearStratum()`, `DMLabelSetStratumIS()`, `DMGetStratumSize()`
7028: @*/
7029: PetscErrorCode DMSetStratumIS(DM dm, const char name[], PetscInt value, IS points)
7030: {
7031: DMLabel label;
7033: PetscFunctionBegin;
7035: PetscAssertPointer(name, 2);
7037: PetscCall(DMGetLabel(dm, name, &label));
7038: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
7039: PetscCall(DMLabelSetStratumIS(label, value, points));
7040: PetscFunctionReturn(PETSC_SUCCESS);
7041: }
7043: /*@
7044: DMClearLabelStratum - Remove all points from a stratum from a `DMLabel`
7046: Not Collective
7048: Input Parameters:
7049: + dm - The `DM` object
7050: . name - The label name
7051: - value - The label value for this point
7053: Output Parameter:
7055: Level: beginner
7057: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMLabelClearStratum()`, `DMSetLabelValue()`, `DMGetStratumIS()`, `DMClearLabelValue()`
7058: @*/
7059: PetscErrorCode DMClearLabelStratum(DM dm, const char name[], PetscInt value)
7060: {
7061: DMLabel label;
7063: PetscFunctionBegin;
7065: PetscAssertPointer(name, 2);
7066: PetscCall(DMGetLabel(dm, name, &label));
7067: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
7068: PetscCall(DMLabelClearStratum(label, value));
7069: PetscFunctionReturn(PETSC_SUCCESS);
7070: }
7072: /*@
7073: DMGetNumLabels - Return the number of labels defined by on the `DM`
7075: Not Collective
7077: Input Parameter:
7078: . dm - The `DM` object
7080: Output Parameter:
7081: . numLabels - the number of Labels
7083: Level: intermediate
7085: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMGetLabelByNum()`, `DMGetLabelName()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7086: @*/
7087: PetscErrorCode DMGetNumLabels(DM dm, PetscInt *numLabels)
7088: {
7089: DMLabelLink next = dm->labels;
7090: PetscInt n = 0;
7092: PetscFunctionBegin;
7094: PetscAssertPointer(numLabels, 2);
7095: while (next) {
7096: ++n;
7097: next = next->next;
7098: }
7099: *numLabels = n;
7100: PetscFunctionReturn(PETSC_SUCCESS);
7101: }
7103: /*@
7104: DMGetLabelName - Return the name of nth label
7106: Not Collective
7108: Input Parameters:
7109: + dm - The `DM` object
7110: - n - the label number
7112: Output Parameter:
7113: . name - the label name
7115: Level: intermediate
7117: Developer Note:
7118: Some of the functions that appropriate on labels using their number have the suffix ByNum, others do not.
7120: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMGetLabelByNum()`, `DMGetLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7121: @*/
7122: PetscErrorCode DMGetLabelName(DM dm, PetscInt n, const char *name[])
7123: {
7124: DMLabelLink next = dm->labels;
7125: PetscInt l = 0;
7127: PetscFunctionBegin;
7129: PetscAssertPointer(name, 3);
7130: while (next) {
7131: if (l == n) {
7132: PetscCall(PetscObjectGetName((PetscObject)next->label, name));
7133: PetscFunctionReturn(PETSC_SUCCESS);
7134: }
7135: ++l;
7136: next = next->next;
7137: }
7138: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Label %" PetscInt_FMT " does not exist in this DM", n);
7139: }
7141: /*@
7142: DMHasLabel - Determine whether the `DM` has a label of a given name
7144: Not Collective
7146: Input Parameters:
7147: + dm - The `DM` object
7148: - name - The label name
7150: Output Parameter:
7151: . hasLabel - `PETSC_TRUE` if the label is present
7153: Level: intermediate
7155: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMGetLabel()`, `DMGetLabelByNum()`, `DMCreateLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7156: @*/
7157: PetscErrorCode DMHasLabel(DM dm, const char name[], PetscBool *hasLabel)
7158: {
7159: DMLabelLink next = dm->labels;
7160: const char *lname;
7162: PetscFunctionBegin;
7164: PetscAssertPointer(name, 2);
7165: PetscAssertPointer(hasLabel, 3);
7166: *hasLabel = PETSC_FALSE;
7167: while (next) {
7168: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7169: PetscCall(PetscStrcmp(name, lname, hasLabel));
7170: if (*hasLabel) break;
7171: next = next->next;
7172: }
7173: PetscFunctionReturn(PETSC_SUCCESS);
7174: }
7176: // PetscClangLinter pragma ignore: -fdoc-section-header-unknown
7177: /*@
7178: DMGetLabel - Return the label of a given name, or `NULL`, from a `DM`
7180: Not Collective
7182: Input Parameters:
7183: + dm - The `DM` object
7184: - name - The label name
7186: Output Parameter:
7187: . label - The `DMLabel`, or `NULL` if the label is absent
7189: Default labels in a `DMPLEX`:
7190: + "depth" - Holds the depth (co-dimension) of each mesh point
7191: . "celltype" - Holds the topological type of each cell
7192: . "ghost" - If the DM is distributed with overlap, this marks the cells and faces in the overlap
7193: . "Cell Sets" - Mirrors the cell sets defined by GMsh and ExodusII
7194: . "Face Sets" - Mirrors the face sets defined by GMsh and ExodusII
7195: - "Vertex Sets" - Mirrors the vertex sets defined by GMsh
7197: Level: intermediate
7199: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMHasLabel()`, `DMGetLabelByNum()`, `DMAddLabel()`, `DMCreateLabel()`, `DMPlexGetDepthLabel()`, `DMPlexGetCellType()`
7200: @*/
7201: PetscErrorCode DMGetLabel(DM dm, const char name[], DMLabel *label)
7202: {
7203: DMLabelLink next = dm->labels;
7204: PetscBool hasLabel;
7205: const char *lname;
7207: PetscFunctionBegin;
7209: PetscAssertPointer(name, 2);
7210: PetscAssertPointer(label, 3);
7211: *label = NULL;
7212: while (next) {
7213: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7214: PetscCall(PetscStrcmp(name, lname, &hasLabel));
7215: if (hasLabel) {
7216: *label = next->label;
7217: break;
7218: }
7219: next = next->next;
7220: }
7221: PetscFunctionReturn(PETSC_SUCCESS);
7222: }
7224: /*@
7225: DMGetLabelByNum - Return the nth label on a `DM`
7227: Not Collective
7229: Input Parameters:
7230: + dm - The `DM` object
7231: - n - the label number
7233: Output Parameter:
7234: . label - the label
7236: Level: intermediate
7238: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMAddLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7239: @*/
7240: PetscErrorCode DMGetLabelByNum(DM dm, PetscInt n, DMLabel *label)
7241: {
7242: DMLabelLink next = dm->labels;
7243: PetscInt l = 0;
7245: PetscFunctionBegin;
7247: PetscAssertPointer(label, 3);
7248: while (next) {
7249: if (l == n) {
7250: *label = next->label;
7251: PetscFunctionReturn(PETSC_SUCCESS);
7252: }
7253: ++l;
7254: next = next->next;
7255: }
7256: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Label %" PetscInt_FMT " does not exist in this DM", n);
7257: }
7259: /*@
7260: DMAddLabel - Add the label to this `DM`
7262: Not Collective
7264: Input Parameters:
7265: + dm - The `DM` object
7266: - label - The `DMLabel`
7268: Level: developer
7270: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7271: @*/
7272: PetscErrorCode DMAddLabel(DM dm, DMLabel label)
7273: {
7274: DMLabelLink l, *p, tmpLabel;
7275: PetscBool hasLabel;
7276: const char *lname;
7277: PetscBool flg;
7279: PetscFunctionBegin;
7281: PetscCall(PetscObjectGetName((PetscObject)label, &lname));
7282: PetscCall(DMHasLabel(dm, lname, &hasLabel));
7283: PetscCheck(!hasLabel, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Label %s already exists in this DM", lname);
7284: PetscCall(PetscCalloc1(1, &tmpLabel));
7285: tmpLabel->label = label;
7286: tmpLabel->output = PETSC_TRUE;
7287: for (p = &dm->labels; (l = *p); p = &l->next) { }
7288: *p = tmpLabel;
7289: PetscCall(PetscObjectReference((PetscObject)label));
7290: PetscCall(PetscStrcmp(lname, "depth", &flg));
7291: if (flg) dm->depthLabel = label;
7292: PetscCall(PetscStrcmp(lname, "celltype", &flg));
7293: if (flg) dm->celltypeLabel = label;
7294: PetscFunctionReturn(PETSC_SUCCESS);
7295: }
7297: // PetscClangLinter pragma ignore: -fdoc-section-header-unknown
7298: /*@
7299: DMSetLabel - Replaces the label of a given name, or ignores it if the name is not present
7301: Not Collective
7303: Input Parameters:
7304: + dm - The `DM` object
7305: - label - The `DMLabel`, having the same name, to substitute
7307: Default labels in a `DMPLEX`:
7308: + "depth" - Holds the depth (co-dimension) of each mesh point
7309: . "celltype" - Holds the topological type of each cell
7310: . "ghost" - If the DM is distributed with overlap, this marks the cells and faces in the overlap
7311: . "Cell Sets" - Mirrors the cell sets defined by GMsh and ExodusII
7312: . "Face Sets" - Mirrors the face sets defined by GMsh and ExodusII
7313: - "Vertex Sets" - Mirrors the vertex sets defined by GMsh
7315: Level: intermediate
7317: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMCreateLabel()`, `DMHasLabel()`, `DMPlexGetDepthLabel()`, `DMPlexGetCellType()`
7318: @*/
7319: PetscErrorCode DMSetLabel(DM dm, DMLabel label)
7320: {
7321: DMLabelLink next = dm->labels;
7322: PetscBool hasLabel, flg;
7323: const char *name, *lname;
7325: PetscFunctionBegin;
7328: PetscCall(PetscObjectGetName((PetscObject)label, &name));
7329: while (next) {
7330: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7331: PetscCall(PetscStrcmp(name, lname, &hasLabel));
7332: if (hasLabel) {
7333: PetscCall(PetscObjectReference((PetscObject)label));
7334: PetscCall(PetscStrcmp(lname, "depth", &flg));
7335: if (flg) dm->depthLabel = label;
7336: PetscCall(PetscStrcmp(lname, "celltype", &flg));
7337: if (flg) dm->celltypeLabel = label;
7338: PetscCall(DMLabelDestroy(&next->label));
7339: next->label = label;
7340: break;
7341: }
7342: next = next->next;
7343: }
7344: PetscFunctionReturn(PETSC_SUCCESS);
7345: }
7347: /*@
7348: DMRemoveLabel - Remove the label given by name from this `DM`
7350: Not Collective
7352: Input Parameters:
7353: + dm - The `DM` object
7354: - name - The label name
7356: Output Parameter:
7357: . label - The `DMLabel`, or `NULL` if the label is absent. Pass in `NULL` to call `DMLabelDestroy()` on the label, otherwise the
7358: caller is responsible for calling `DMLabelDestroy()`.
7360: Level: developer
7362: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMLabelDestroy()`, `DMRemoveLabelBySelf()`
7363: @*/
7364: PetscErrorCode DMRemoveLabel(DM dm, const char name[], DMLabel *label)
7365: {
7366: DMLabelLink link, *pnext;
7367: PetscBool hasLabel;
7368: const char *lname;
7370: PetscFunctionBegin;
7372: PetscAssertPointer(name, 2);
7373: if (label) {
7374: PetscAssertPointer(label, 3);
7375: *label = NULL;
7376: }
7377: for (pnext = &dm->labels; (link = *pnext); pnext = &link->next) {
7378: PetscCall(PetscObjectGetName((PetscObject)link->label, &lname));
7379: PetscCall(PetscStrcmp(name, lname, &hasLabel));
7380: if (hasLabel) {
7381: *pnext = link->next; /* Remove from list */
7382: PetscCall(PetscStrcmp(name, "depth", &hasLabel));
7383: if (hasLabel) dm->depthLabel = NULL;
7384: PetscCall(PetscStrcmp(name, "celltype", &hasLabel));
7385: if (hasLabel) dm->celltypeLabel = NULL;
7386: if (label) *label = link->label;
7387: else PetscCall(DMLabelDestroy(&link->label));
7388: PetscCall(PetscFree(link));
7389: break;
7390: }
7391: }
7392: PetscFunctionReturn(PETSC_SUCCESS);
7393: }
7395: /*@
7396: DMRemoveLabelBySelf - Remove the label from this `DM`
7398: Not Collective
7400: Input Parameters:
7401: + dm - The `DM` object
7402: . label - The `DMLabel` to be removed from the `DM`
7403: - failNotFound - Should it fail if the label is not found in the `DM`?
7405: Level: developer
7407: Note:
7408: Only exactly the same instance is removed if found, name match is ignored.
7409: If the `DM` has an exclusive reference to the label, the label gets destroyed and
7410: *label nullified.
7412: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabel()` `DMGetLabelValue()`, `DMSetLabelValue()`, `DMLabelDestroy()`, `DMRemoveLabel()`
7413: @*/
7414: PetscErrorCode DMRemoveLabelBySelf(DM dm, DMLabel *label, PetscBool failNotFound)
7415: {
7416: DMLabelLink link, *pnext;
7417: PetscBool hasLabel = PETSC_FALSE;
7419: PetscFunctionBegin;
7421: PetscAssertPointer(label, 2);
7422: if (!*label && !failNotFound) PetscFunctionReturn(PETSC_SUCCESS);
7425: for (pnext = &dm->labels; (link = *pnext); pnext = &link->next) {
7426: if (*label == link->label) {
7427: hasLabel = PETSC_TRUE;
7428: *pnext = link->next; /* Remove from list */
7429: if (*label == dm->depthLabel) dm->depthLabel = NULL;
7430: if (*label == dm->celltypeLabel) dm->celltypeLabel = NULL;
7431: if (((PetscObject)link->label)->refct < 2) *label = NULL; /* nullify if exclusive reference */
7432: PetscCall(DMLabelDestroy(&link->label));
7433: PetscCall(PetscFree(link));
7434: break;
7435: }
7436: }
7437: PetscCheck(hasLabel || !failNotFound, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Given label not found in DM");
7438: PetscFunctionReturn(PETSC_SUCCESS);
7439: }
7441: /*@
7442: DMGetLabelOutput - Get the output flag for a given label
7444: Not Collective
7446: Input Parameters:
7447: + dm - The `DM` object
7448: - name - The label name
7450: Output Parameter:
7451: . output - The flag for output
7453: Level: developer
7455: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMSetLabelOutput()`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7456: @*/
7457: PetscErrorCode DMGetLabelOutput(DM dm, const char name[], PetscBool *output)
7458: {
7459: DMLabelLink next = dm->labels;
7460: const char *lname;
7462: PetscFunctionBegin;
7464: PetscAssertPointer(name, 2);
7465: PetscAssertPointer(output, 3);
7466: while (next) {
7467: PetscBool flg;
7469: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7470: PetscCall(PetscStrcmp(name, lname, &flg));
7471: if (flg) {
7472: *output = next->output;
7473: PetscFunctionReturn(PETSC_SUCCESS);
7474: }
7475: next = next->next;
7476: }
7477: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "No label named %s was present in this dm", name);
7478: }
7480: /*@
7481: DMSetLabelOutput - Set if a given label should be saved to a `PetscViewer` in calls to `DMView()`
7483: Not Collective
7485: Input Parameters:
7486: + dm - The `DM` object
7487: . name - The label name
7488: - output - `PETSC_TRUE` to save the label to the viewer
7490: Level: developer
7492: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMGetOutputFlag()`, `DMGetLabelOutput()`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7493: @*/
7494: PetscErrorCode DMSetLabelOutput(DM dm, const char name[], PetscBool output)
7495: {
7496: DMLabelLink next = dm->labels;
7497: const char *lname;
7499: PetscFunctionBegin;
7501: PetscAssertPointer(name, 2);
7502: while (next) {
7503: PetscBool flg;
7505: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7506: PetscCall(PetscStrcmp(name, lname, &flg));
7507: if (flg) {
7508: next->output = output;
7509: PetscFunctionReturn(PETSC_SUCCESS);
7510: }
7511: next = next->next;
7512: }
7513: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "No label named %s was present in this dm", name);
7514: }
7516: /*@
7517: DMCopyLabels - Copy labels from one `DM` mesh to another `DM` with a superset of the points
7519: Collective
7521: Input Parameters:
7522: + dmA - The `DM` object with initial labels
7523: . dmB - The `DM` object to which labels are copied
7524: . mode - Copy labels by pointers (`PETSC_OWN_POINTER`) or duplicate them (`PETSC_COPY_VALUES`)
7525: . all - Copy all labels including "depth", "dim", and "celltype" (`PETSC_TRUE`) which are otherwise ignored (`PETSC_FALSE`)
7526: - emode - How to behave when a `DMLabel` in the source and destination `DM`s with the same name is encountered (see `DMCopyLabelsMode`)
7528: Level: intermediate
7530: Note:
7531: This is typically used when interpolating or otherwise adding to a mesh, or testing.
7533: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMAddLabel()`, `DMCopyLabelsMode`
7534: @*/
7535: PetscErrorCode DMCopyLabels(DM dmA, DM dmB, PetscCopyMode mode, PetscBool all, DMCopyLabelsMode emode)
7536: {
7537: DMLabel label, labelNew, labelOld;
7538: const char *name;
7539: PetscBool flg;
7540: DMLabelLink link;
7542: PetscFunctionBegin;
7547: PetscCheck(mode != PETSC_USE_POINTER, PetscObjectComm((PetscObject)dmA), PETSC_ERR_SUP, "PETSC_USE_POINTER not supported for objects");
7548: if (dmA == dmB) PetscFunctionReturn(PETSC_SUCCESS);
7549: for (link = dmA->labels; link; link = link->next) {
7550: label = link->label;
7551: PetscCall(PetscObjectGetName((PetscObject)label, &name));
7552: if (!all) {
7553: PetscCall(PetscStrcmp(name, "depth", &flg));
7554: if (flg) continue;
7555: PetscCall(PetscStrcmp(name, "dim", &flg));
7556: if (flg) continue;
7557: PetscCall(PetscStrcmp(name, "celltype", &flg));
7558: if (flg) continue;
7559: }
7560: PetscCall(DMGetLabel(dmB, name, &labelOld));
7561: if (labelOld) {
7562: switch (emode) {
7563: case DM_COPY_LABELS_KEEP:
7564: continue;
7565: case DM_COPY_LABELS_REPLACE:
7566: PetscCall(DMRemoveLabelBySelf(dmB, &labelOld, PETSC_TRUE));
7567: break;
7568: case DM_COPY_LABELS_FAIL:
7569: SETERRQ(PetscObjectComm((PetscObject)dmA), PETSC_ERR_ARG_OUTOFRANGE, "Label %s already exists in destination DM", name);
7570: default:
7571: SETERRQ(PetscObjectComm((PetscObject)dmA), PETSC_ERR_ARG_OUTOFRANGE, "Unhandled DMCopyLabelsMode %d", (int)emode);
7572: }
7573: }
7574: if (mode == PETSC_COPY_VALUES) {
7575: PetscCall(DMLabelDuplicate(label, &labelNew));
7576: } else {
7577: labelNew = label;
7578: }
7579: PetscCall(DMAddLabel(dmB, labelNew));
7580: if (mode == PETSC_COPY_VALUES) PetscCall(DMLabelDestroy(&labelNew));
7581: }
7582: PetscFunctionReturn(PETSC_SUCCESS);
7583: }
7585: /*@C
7586: DMCompareLabels - Compare labels between two `DM` objects
7588: Collective; No Fortran Support
7590: Input Parameters:
7591: + dm0 - First `DM` object
7592: - dm1 - Second `DM` object
7594: Output Parameters:
7595: + equal - (Optional) Flag whether labels of `dm0` and `dm1` are the same
7596: - message - (Optional) Message describing the difference, or `NULL` if there is no difference
7598: Level: intermediate
7600: Notes:
7601: The output flag equal will be the same on all processes.
7603: If equal is passed as `NULL` and difference is found, an error is thrown on all processes.
7605: Make sure to pass equal is `NULL` on all processes or none of them.
7607: The output message is set independently on each rank.
7609: message must be freed with `PetscFree()`
7611: If message is passed as `NULL` and a difference is found, the difference description is printed to `stderr` in synchronized manner.
7613: Make sure to pass message as `NULL` on all processes or no processes.
7615: Labels are matched by name. If the number of labels and their names are equal,
7616: `DMLabelCompare()` is used to compare each pair of labels with the same name.
7618: Developer Note:
7619: Cannot automatically generate the Fortran stub because `message` must be freed with `PetscFree()`
7621: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMAddLabel()`, `DMCopyLabelsMode`, `DMLabelCompare()`
7622: @*/
7623: PetscErrorCode DMCompareLabels(DM dm0, DM dm1, PetscBool *equal, char *message[]) PeNS
7624: {
7625: PetscInt n, i;
7626: char msg[PETSC_MAX_PATH_LEN] = "";
7627: PetscBool eq;
7628: MPI_Comm comm;
7629: PetscMPIInt rank;
7631: PetscFunctionBegin;
7634: PetscCheckSameComm(dm0, 1, dm1, 2);
7635: if (equal) PetscAssertPointer(equal, 3);
7636: if (message) PetscAssertPointer(message, 4);
7637: PetscCall(PetscObjectGetComm((PetscObject)dm0, &comm));
7638: PetscCallMPI(MPI_Comm_rank(comm, &rank));
7639: {
7640: PetscInt n1;
7642: PetscCall(DMGetNumLabels(dm0, &n));
7643: PetscCall(DMGetNumLabels(dm1, &n1));
7644: eq = (PetscBool)(n == n1);
7645: if (!eq) PetscCall(PetscSNPrintf(msg, sizeof(msg), "Number of labels in dm0 = %" PetscInt_FMT " != %" PetscInt_FMT " = Number of labels in dm1", n, n1));
7646: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, &eq, 1, MPIU_BOOL, MPI_LAND, comm));
7647: if (!eq) goto finish;
7648: }
7649: for (i = 0; i < n; i++) {
7650: DMLabel l0, l1;
7651: const char *name;
7652: char *msgInner;
7654: /* Ignore label order */
7655: PetscCall(DMGetLabelByNum(dm0, i, &l0));
7656: PetscCall(PetscObjectGetName((PetscObject)l0, &name));
7657: PetscCall(DMGetLabel(dm1, name, &l1));
7658: if (!l1) {
7659: PetscCall(PetscSNPrintf(msg, sizeof(msg), "Label \"%s\" (#%" PetscInt_FMT " in dm0) not found in dm1", name, i));
7660: eq = PETSC_FALSE;
7661: break;
7662: }
7663: PetscCall(DMLabelCompare(comm, l0, l1, &eq, &msgInner));
7664: PetscCall(PetscStrncpy(msg, msgInner, sizeof(msg)));
7665: PetscCall(PetscFree(msgInner));
7666: if (!eq) break;
7667: }
7668: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, &eq, 1, MPIU_BOOL, MPI_LAND, comm));
7669: finish:
7670: /* If message output arg not set, print to stderr */
7671: if (message) {
7672: *message = NULL;
7673: if (msg[0]) PetscCall(PetscStrallocpy(msg, message));
7674: } else {
7675: if (msg[0]) PetscCall(PetscSynchronizedFPrintf(comm, PETSC_STDERR, "[%d] %s\n", rank, msg));
7676: PetscCall(PetscSynchronizedFlush(comm, PETSC_STDERR));
7677: }
7678: /* If same output arg not ser and labels are not equal, throw error */
7679: if (equal) *equal = eq;
7680: else PetscCheck(eq, comm, PETSC_ERR_ARG_INCOMP, "DMLabels are not the same in dm0 and dm1");
7681: PetscFunctionReturn(PETSC_SUCCESS);
7682: }
7684: PetscErrorCode DMSetLabelValue_Fast(DM dm, DMLabel *label, const char name[], PetscInt point, PetscInt value)
7685: {
7686: PetscFunctionBegin;
7687: PetscAssertPointer(label, 2);
7688: if (!*label) {
7689: PetscCall(DMCreateLabel(dm, name));
7690: PetscCall(DMGetLabel(dm, name, label));
7691: }
7692: PetscCall(DMLabelSetValue(*label, point, value));
7693: PetscFunctionReturn(PETSC_SUCCESS);
7694: }
7696: /*
7697: Many mesh programs, such as Triangle and TetGen, allow only a single label for each mesh point. Therefore, we would
7698: like to encode all label IDs using a single, universal label. We can do this by assigning an integer to every
7699: (label, id) pair in the DM.
7701: However, a mesh point can have multiple labels, so we must separate all these values. We will assign a bit range to
7702: each label.
7703: */
7704: PetscErrorCode DMUniversalLabelCreate(DM dm, DMUniversalLabel *universal)
7705: {
7706: DMUniversalLabel ul;
7707: PetscBool *active;
7708: PetscInt pStart, pEnd, p, Nl, l, m;
7710: PetscFunctionBegin;
7711: PetscCall(PetscMalloc1(1, &ul));
7712: PetscCall(DMLabelCreate(PETSC_COMM_SELF, "universal", &ul->label));
7713: PetscCall(DMGetNumLabels(dm, &Nl));
7714: PetscCall(PetscCalloc1(Nl, &active));
7715: ul->Nl = 0;
7716: for (l = 0; l < Nl; ++l) {
7717: PetscBool isdepth, iscelltype;
7718: const char *name;
7720: PetscCall(DMGetLabelName(dm, l, &name));
7721: PetscCall(PetscStrncmp(name, "depth", 6, &isdepth));
7722: PetscCall(PetscStrncmp(name, "celltype", 9, &iscelltype));
7723: active[l] = !(isdepth || iscelltype) ? PETSC_TRUE : PETSC_FALSE;
7724: if (active[l]) ++ul->Nl;
7725: }
7726: PetscCall(PetscCalloc5(ul->Nl, &ul->names, ul->Nl, &ul->indices, ul->Nl + 1, &ul->offsets, ul->Nl + 1, &ul->bits, ul->Nl, &ul->masks));
7727: ul->Nv = 0;
7728: for (l = 0, m = 0; l < Nl; ++l) {
7729: DMLabel label;
7730: PetscInt nv;
7731: const char *name;
7733: if (!active[l]) continue;
7734: PetscCall(DMGetLabelName(dm, l, &name));
7735: PetscCall(DMGetLabelByNum(dm, l, &label));
7736: PetscCall(DMLabelGetNumValues(label, &nv));
7737: PetscCall(PetscStrallocpy(name, &ul->names[m]));
7738: ul->indices[m] = l;
7739: ul->Nv += nv;
7740: ul->offsets[m + 1] = nv;
7741: ul->bits[m + 1] = PetscCeilReal(PetscLog2Real(nv + 1));
7742: ++m;
7743: }
7744: for (l = 1; l <= ul->Nl; ++l) {
7745: ul->offsets[l] = ul->offsets[l - 1] + ul->offsets[l];
7746: ul->bits[l] = ul->bits[l - 1] + ul->bits[l];
7747: }
7748: for (l = 0; l < ul->Nl; ++l) {
7749: PetscInt b;
7751: ul->masks[l] = 0;
7752: for (b = ul->bits[l]; b < ul->bits[l + 1]; ++b) ul->masks[l] |= 1 << b;
7753: }
7754: PetscCall(PetscMalloc1(ul->Nv, &ul->values));
7755: for (l = 0, m = 0; l < Nl; ++l) {
7756: DMLabel label;
7757: IS valueIS;
7758: const PetscInt *varr;
7759: PetscInt nv, v;
7761: if (!active[l]) continue;
7762: PetscCall(DMGetLabelByNum(dm, l, &label));
7763: PetscCall(DMLabelGetNumValues(label, &nv));
7764: PetscCall(DMLabelGetValueIS(label, &valueIS));
7765: PetscCall(ISGetIndices(valueIS, &varr));
7766: for (v = 0; v < nv; ++v) ul->values[ul->offsets[m] + v] = varr[v];
7767: PetscCall(ISRestoreIndices(valueIS, &varr));
7768: PetscCall(ISDestroy(&valueIS));
7769: PetscCall(PetscSortInt(nv, &ul->values[ul->offsets[m]]));
7770: ++m;
7771: }
7772: PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
7773: for (p = pStart; p < pEnd; ++p) {
7774: PetscInt uval = 0;
7775: PetscBool marked = PETSC_FALSE;
7777: for (l = 0, m = 0; l < Nl; ++l) {
7778: DMLabel label;
7779: PetscInt val, defval, loc, nv;
7781: if (!active[l]) continue;
7782: PetscCall(DMGetLabelByNum(dm, l, &label));
7783: PetscCall(DMLabelGetValue(label, p, &val));
7784: PetscCall(DMLabelGetDefaultValue(label, &defval));
7785: if (val == defval) {
7786: ++m;
7787: continue;
7788: }
7789: nv = ul->offsets[m + 1] - ul->offsets[m];
7790: marked = PETSC_TRUE;
7791: PetscCall(PetscFindInt(val, nv, &ul->values[ul->offsets[m]], &loc));
7792: PetscCheck(loc >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Label value %" PetscInt_FMT " not found in compression array", val);
7793: uval += (loc + 1) << ul->bits[m];
7794: ++m;
7795: }
7796: if (marked) PetscCall(DMLabelSetValue(ul->label, p, uval));
7797: }
7798: PetscCall(PetscFree(active));
7799: *universal = ul;
7800: PetscFunctionReturn(PETSC_SUCCESS);
7801: }
7803: PetscErrorCode DMUniversalLabelDestroy(DMUniversalLabel *universal)
7804: {
7805: PetscInt l;
7807: PetscFunctionBegin;
7808: for (l = 0; l < (*universal)->Nl; ++l) PetscCall(PetscFree((*universal)->names[l]));
7809: PetscCall(DMLabelDestroy(&(*universal)->label));
7810: PetscCall(PetscFree5((*universal)->names, (*universal)->indices, (*universal)->offsets, (*universal)->bits, (*universal)->masks));
7811: PetscCall(PetscFree((*universal)->values));
7812: PetscCall(PetscFree(*universal));
7813: *universal = NULL;
7814: PetscFunctionReturn(PETSC_SUCCESS);
7815: }
7817: PetscErrorCode DMUniversalLabelGetLabel(DMUniversalLabel ul, DMLabel *ulabel)
7818: {
7819: PetscFunctionBegin;
7820: PetscAssertPointer(ulabel, 2);
7821: *ulabel = ul->label;
7822: PetscFunctionReturn(PETSC_SUCCESS);
7823: }
7825: PetscErrorCode DMUniversalLabelCreateLabels(DMUniversalLabel ul, PetscBool preserveOrder, DM dm)
7826: {
7827: PetscInt Nl = ul->Nl, l;
7829: PetscFunctionBegin;
7831: for (l = 0; l < Nl; ++l) {
7832: if (preserveOrder) PetscCall(DMCreateLabelAtIndex(dm, ul->indices[l], ul->names[l]));
7833: else PetscCall(DMCreateLabel(dm, ul->names[l]));
7834: }
7835: if (preserveOrder) {
7836: for (l = 0; l < ul->Nl; ++l) {
7837: const char *name;
7838: PetscBool match;
7840: PetscCall(DMGetLabelName(dm, ul->indices[l], &name));
7841: PetscCall(PetscStrcmp(name, ul->names[l], &match));
7842: PetscCheck(match, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Label %" PetscInt_FMT " name %s does not match new name %s", l, name, ul->names[l]);
7843: }
7844: }
7845: PetscFunctionReturn(PETSC_SUCCESS);
7846: }
7848: PetscErrorCode DMUniversalLabelSetLabelValue(DMUniversalLabel ul, DM dm, PetscBool useIndex, PetscInt p, PetscInt value)
7849: {
7850: PetscInt l;
7852: PetscFunctionBegin;
7853: for (l = 0; l < ul->Nl; ++l) {
7854: DMLabel label;
7855: PetscInt lval = (value & ul->masks[l]) >> ul->bits[l];
7857: if (lval) {
7858: if (useIndex) PetscCall(DMGetLabelByNum(dm, ul->indices[l], &label));
7859: else PetscCall(DMGetLabel(dm, ul->names[l], &label));
7860: PetscCall(DMLabelSetValue(label, p, ul->values[ul->offsets[l] + lval - 1]));
7861: }
7862: }
7863: PetscFunctionReturn(PETSC_SUCCESS);
7864: }
7866: /*@
7867: DMGetCoarseDM - Get the coarse `DM`from which this `DM` was obtained by refinement
7869: Not Collective
7871: Input Parameter:
7872: . dm - The `DM` object
7874: Output Parameter:
7875: . cdm - The coarse `DM`
7877: Level: intermediate
7879: .seealso: [](ch_dmbase), `DM`, `DMSetCoarseDM()`, `DMCoarsen()`
7880: @*/
7881: PetscErrorCode DMGetCoarseDM(DM dm, DM *cdm)
7882: {
7883: PetscFunctionBegin;
7885: PetscAssertPointer(cdm, 2);
7886: *cdm = dm->coarseMesh;
7887: PetscFunctionReturn(PETSC_SUCCESS);
7888: }
7890: /*@
7891: DMSetCoarseDM - Set the coarse `DM` from which this `DM` was obtained by refinement
7893: Input Parameters:
7894: + dm - The `DM` object
7895: - cdm - The coarse `DM`
7897: Level: intermediate
7899: Note:
7900: Normally this is set automatically by `DMRefine()`
7902: .seealso: [](ch_dmbase), `DM`, `DMGetCoarseDM()`, `DMCoarsen()`, `DMSetRefine()`, `DMSetFineDM()`
7903: @*/
7904: PetscErrorCode DMSetCoarseDM(DM dm, DM cdm)
7905: {
7906: PetscFunctionBegin;
7909: if (dm == cdm) cdm = NULL;
7910: PetscCall(PetscObjectReference((PetscObject)cdm));
7911: PetscCall(DMDestroy(&dm->coarseMesh));
7912: dm->coarseMesh = cdm;
7913: PetscFunctionReturn(PETSC_SUCCESS);
7914: }
7916: /*@
7917: DMGetFineDM - Get the fine mesh from which this `DM` was obtained by coarsening
7919: Input Parameter:
7920: . dm - The `DM` object
7922: Output Parameter:
7923: . fdm - The fine `DM`
7925: Level: intermediate
7927: .seealso: [](ch_dmbase), `DM`, `DMSetFineDM()`, `DMCoarsen()`, `DMRefine()`
7928: @*/
7929: PetscErrorCode DMGetFineDM(DM dm, DM *fdm)
7930: {
7931: PetscFunctionBegin;
7933: PetscAssertPointer(fdm, 2);
7934: *fdm = dm->fineMesh;
7935: PetscFunctionReturn(PETSC_SUCCESS);
7936: }
7938: /*@
7939: DMSetFineDM - Set the fine mesh from which this was obtained by coarsening
7941: Input Parameters:
7942: + dm - The `DM` object
7943: - fdm - The fine `DM`
7945: Level: developer
7947: Note:
7948: Normally this is set automatically by `DMCoarsen()`
7950: .seealso: [](ch_dmbase), `DM`, `DMGetFineDM()`, `DMCoarsen()`, `DMRefine()`
7951: @*/
7952: PetscErrorCode DMSetFineDM(DM dm, DM fdm)
7953: {
7954: PetscFunctionBegin;
7957: if (dm == fdm) fdm = NULL;
7958: PetscCall(PetscObjectReference((PetscObject)fdm));
7959: PetscCall(DMDestroy(&dm->fineMesh));
7960: dm->fineMesh = fdm;
7961: PetscFunctionReturn(PETSC_SUCCESS);
7962: }
7964: /*@C
7965: DMAddBoundary - Add a boundary condition to a model represented by a `DM`
7967: Collective
7969: Input Parameters:
7970: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
7971: . type - The type of condition, e.g. `DM_BC_ESSENTIAL_ANALYTIC`, `DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
7972: . name - The BC name
7973: . label - The label defining constrained points
7974: . Nv - The number of `DMLabel` values for constrained points
7975: . values - An array of values for constrained points
7976: . field - The field to constrain
7977: . Nc - The number of constrained field components (0 will constrain all components)
7978: . comps - An array of constrained component numbers
7979: . bcFunc - A pointwise function giving boundary values
7980: . bcFunc_t - A pointwise function giving the time deriative of the boundary values, or NULL
7981: - ctx - An optional user context for bcFunc
7983: Output Parameter:
7984: . bd - (Optional) Boundary number
7986: Options Database Keys:
7987: + -bc_<boundary name> <num> - Overrides the boundary ids
7988: - -bc_<boundary name>_comp <num> - Overrides the boundary components
7990: Level: intermediate
7992: Notes:
7993: If the `DM` is of type `DMPLEX` and the field is of type `PetscFE`, then this function completes the label using `DMPlexLabelComplete()`.
7995: Both bcFunc and bcFunc_t will depend on the boundary condition type. If the type if `DM_BC_ESSENTIAL`, then the calling sequence is\:
7996: .vb
7997: void bcFunc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar bcval[])
7998: .ve
8000: If the type is `DM_BC_ESSENTIAL_FIELD` or other _FIELD value, then the calling sequence is\:
8002: .vb
8003: void bcFunc(PetscInt dim, PetscInt Nf, PetscInt NfAux,
8004: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
8005: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
8006: PetscReal time, const PetscReal x[], PetscScalar bcval[])
8007: .ve
8008: + dim - the spatial dimension
8009: . Nf - the number of fields
8010: . uOff - the offset into u[] and u_t[] for each field
8011: . uOff_x - the offset into u_x[] for each field
8012: . u - each field evaluated at the current point
8013: . u_t - the time derivative of each field evaluated at the current point
8014: . u_x - the gradient of each field evaluated at the current point
8015: . aOff - the offset into a[] and a_t[] for each auxiliary field
8016: . aOff_x - the offset into a_x[] for each auxiliary field
8017: . a - each auxiliary field evaluated at the current point
8018: . a_t - the time derivative of each auxiliary field evaluated at the current point
8019: . a_x - the gradient of auxiliary each field evaluated at the current point
8020: . t - current time
8021: . x - coordinates of the current point
8022: . numConstants - number of constant parameters
8023: . constants - constant parameters
8024: - bcval - output values at the current point
8026: .seealso: [](ch_dmbase), `DM`, `DSGetBoundary()`, `PetscDSAddBoundary()`
8027: @*/
8028: PetscErrorCode DMAddBoundary(DM dm, DMBoundaryConditionType type, const char name[], DMLabel label, PetscInt Nv, const PetscInt values[], PetscInt field, PetscInt Nc, const PetscInt comps[], void (*bcFunc)(void), void (*bcFunc_t)(void), void *ctx, PetscInt *bd)
8029: {
8030: PetscDS ds;
8032: PetscFunctionBegin;
8039: PetscCheck(!dm->localSection, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "Cannot add boundary to DM after creating local section");
8040: PetscCall(DMGetDS(dm, &ds));
8041: /* Complete label */
8042: if (label) {
8043: PetscObject obj;
8044: PetscClassId id;
8046: PetscCall(DMGetField(dm, field, NULL, &obj));
8047: PetscCall(PetscObjectGetClassId(obj, &id));
8048: if (id == PETSCFE_CLASSID) {
8049: DM plex;
8051: PetscCall(DMConvert(dm, DMPLEX, &plex));
8052: if (plex) PetscCall(DMPlexLabelComplete(plex, label));
8053: PetscCall(DMDestroy(&plex));
8054: }
8055: }
8056: PetscCall(PetscDSAddBoundary(ds, type, name, label, Nv, values, field, Nc, comps, bcFunc, bcFunc_t, ctx, bd));
8057: PetscFunctionReturn(PETSC_SUCCESS);
8058: }
8060: /* TODO Remove this since now the structures are the same */
8061: static PetscErrorCode DMPopulateBoundary(DM dm)
8062: {
8063: PetscDS ds;
8064: DMBoundary *lastnext;
8065: DSBoundary dsbound;
8067: PetscFunctionBegin;
8068: PetscCall(DMGetDS(dm, &ds));
8069: dsbound = ds->boundary;
8070: if (dm->boundary) {
8071: DMBoundary next = dm->boundary;
8073: /* quick check to see if the PetscDS has changed */
8074: if (next->dsboundary == dsbound) PetscFunctionReturn(PETSC_SUCCESS);
8075: /* the PetscDS has changed: tear down and rebuild */
8076: while (next) {
8077: DMBoundary b = next;
8079: next = b->next;
8080: PetscCall(PetscFree(b));
8081: }
8082: dm->boundary = NULL;
8083: }
8085: lastnext = &dm->boundary;
8086: while (dsbound) {
8087: DMBoundary dmbound;
8089: PetscCall(PetscNew(&dmbound));
8090: dmbound->dsboundary = dsbound;
8091: dmbound->label = dsbound->label;
8092: /* push on the back instead of the front so that it is in the same order as in the PetscDS */
8093: *lastnext = dmbound;
8094: lastnext = &dmbound->next;
8095: dsbound = dsbound->next;
8096: }
8097: PetscFunctionReturn(PETSC_SUCCESS);
8098: }
8100: /* TODO: missing manual page */
8101: PetscErrorCode DMIsBoundaryPoint(DM dm, PetscInt point, PetscBool *isBd)
8102: {
8103: DMBoundary b;
8105: PetscFunctionBegin;
8107: PetscAssertPointer(isBd, 3);
8108: *isBd = PETSC_FALSE;
8109: PetscCall(DMPopulateBoundary(dm));
8110: b = dm->boundary;
8111: while (b && !*isBd) {
8112: DMLabel label = b->label;
8113: DSBoundary dsb = b->dsboundary;
8114: PetscInt i;
8116: if (label) {
8117: for (i = 0; i < dsb->Nv && !*isBd; ++i) PetscCall(DMLabelStratumHasPoint(label, dsb->values[i], point, isBd));
8118: }
8119: b = b->next;
8120: }
8121: PetscFunctionReturn(PETSC_SUCCESS);
8122: }
8124: /*@C
8125: DMProjectFunction - This projects the given function into the function space provided by a `DM`, putting the coefficients in a global vector.
8127: Collective
8129: Input Parameters:
8130: + dm - The `DM`
8131: . time - The time
8132: . funcs - The coordinate functions to evaluate, one per field
8133: . ctxs - Optional array of contexts to pass to each coordinate function. ctxs itself may be null.
8134: - mode - The insertion mode for values
8136: Output Parameter:
8137: . X - vector
8139: Calling sequence of `funcs`:
8140: + dim - The spatial dimension
8141: . time - The time at which to sample
8142: . x - The coordinates
8143: . Nc - The number of components
8144: . u - The output field values
8145: - ctx - optional user-defined function context
8147: Level: developer
8149: Developer Notes:
8150: This API is specific to only particular usage of `DM`
8152: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8154: .seealso: [](ch_dmbase), `DM`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabel()`, `DMComputeL2Diff()`
8155: @*/
8156: PetscErrorCode DMProjectFunction(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx), void **ctxs, InsertMode mode, Vec X)
8157: {
8158: Vec localX;
8160: PetscFunctionBegin;
8162: PetscCall(PetscLogEventBegin(DM_ProjectFunction, dm, X, 0, 0));
8163: PetscCall(DMGetLocalVector(dm, &localX));
8164: PetscCall(VecSet(localX, 0.));
8165: PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, mode, localX));
8166: PetscCall(DMLocalToGlobalBegin(dm, localX, mode, X));
8167: PetscCall(DMLocalToGlobalEnd(dm, localX, mode, X));
8168: PetscCall(DMRestoreLocalVector(dm, &localX));
8169: PetscCall(PetscLogEventEnd(DM_ProjectFunction, dm, X, 0, 0));
8170: PetscFunctionReturn(PETSC_SUCCESS);
8171: }
8173: /*@C
8174: DMProjectFunctionLocal - This projects the given function into the function space provided by a `DM`, putting the coefficients in a local vector.
8176: Not Collective
8178: Input Parameters:
8179: + dm - The `DM`
8180: . time - The time
8181: . funcs - The coordinate functions to evaluate, one per field
8182: . ctxs - Optional array of contexts to pass to each coordinate function. ctxs itself may be null.
8183: - mode - The insertion mode for values
8185: Output Parameter:
8186: . localX - vector
8188: Calling sequence of `funcs`:
8189: + dim - The spatial dimension
8190: . time - The current timestep
8191: . x - The coordinates
8192: . Nc - The number of components
8193: . u - The output field values
8194: - ctx - optional user-defined function context
8196: Level: developer
8198: Developer Notes:
8199: This API is specific to only particular usage of `DM`
8201: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8203: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMProjectFunctionLabel()`, `DMComputeL2Diff()`
8204: @*/
8205: PetscErrorCode DMProjectFunctionLocal(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx), void **ctxs, InsertMode mode, Vec localX)
8206: {
8207: PetscFunctionBegin;
8210: PetscUseTypeMethod(dm, projectfunctionlocal, time, funcs, ctxs, mode, localX);
8211: PetscFunctionReturn(PETSC_SUCCESS);
8212: }
8214: /*@C
8215: DMProjectFunctionLabel - This projects the given function into the function space provided by the `DM`, putting the coefficients in a global vector, setting values only for points in the given label.
8217: Collective
8219: Input Parameters:
8220: + dm - The `DM`
8221: . time - The time
8222: . numIds - The number of ids
8223: . ids - The ids
8224: . Nc - The number of components
8225: . comps - The components
8226: . label - The `DMLabel` selecting the portion of the mesh for projection
8227: . funcs - The coordinate functions to evaluate, one per field
8228: . ctxs - Optional array of contexts to pass to each coordinate function. ctxs may be null.
8229: - mode - The insertion mode for values
8231: Output Parameter:
8232: . X - vector
8234: Calling sequence of `funcs`:
8235: + dim - The spatial dimension
8236: . time - The current timestep
8237: . x - The coordinates
8238: . Nc - The number of components
8239: . u - The output field values
8240: - ctx - optional user-defined function context
8242: Level: developer
8244: Developer Notes:
8245: This API is specific to only particular usage of `DM`
8247: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8249: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`, `DMComputeL2Diff()`
8250: @*/
8251: PetscErrorCode DMProjectFunctionLabel(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], PetscErrorCode (**funcs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx), void **ctxs, InsertMode mode, Vec X)
8252: {
8253: Vec localX;
8255: PetscFunctionBegin;
8257: PetscCall(DMGetLocalVector(dm, &localX));
8258: PetscCall(VecSet(localX, 0.));
8259: PetscCall(DMProjectFunctionLabelLocal(dm, time, label, numIds, ids, Nc, comps, funcs, ctxs, mode, localX));
8260: PetscCall(DMLocalToGlobalBegin(dm, localX, mode, X));
8261: PetscCall(DMLocalToGlobalEnd(dm, localX, mode, X));
8262: PetscCall(DMRestoreLocalVector(dm, &localX));
8263: PetscFunctionReturn(PETSC_SUCCESS);
8264: }
8266: /*@C
8267: DMProjectFunctionLabelLocal - This projects the given function into the function space provided by the `DM`, putting the coefficients in a local vector, setting values only for points in the given label.
8269: Not Collective
8271: Input Parameters:
8272: + dm - The `DM`
8273: . time - The time
8274: . label - The `DMLabel` selecting the portion of the mesh for projection
8275: . numIds - The number of ids
8276: . ids - The ids
8277: . Nc - The number of components
8278: . comps - The components
8279: . funcs - The coordinate functions to evaluate, one per field
8280: . ctxs - Optional array of contexts to pass to each coordinate function. ctxs itself may be null.
8281: - mode - The insertion mode for values
8283: Output Parameter:
8284: . localX - vector
8286: Calling sequence of `funcs`:
8287: + dim - The spatial dimension
8288: . time - The current time
8289: . x - The coordinates
8290: . Nc - The number of components
8291: . u - The output field values
8292: - ctx - optional user-defined function context
8294: Level: developer
8296: Developer Notes:
8297: This API is specific to only particular usage of `DM`
8299: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8301: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabel()`, `DMComputeL2Diff()`
8302: @*/
8303: PetscErrorCode DMProjectFunctionLabelLocal(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], PetscErrorCode (**funcs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx), void **ctxs, InsertMode mode, Vec localX)
8304: {
8305: PetscFunctionBegin;
8308: PetscUseTypeMethod(dm, projectfunctionlabellocal, time, label, numIds, ids, Nc, comps, funcs, ctxs, mode, localX);
8309: PetscFunctionReturn(PETSC_SUCCESS);
8310: }
8312: /*@C
8313: DMProjectFieldLocal - This projects the given function of the input fields into the function space provided by the `DM`, putting the coefficients in a local vector.
8315: Not Collective
8317: Input Parameters:
8318: + dm - The `DM`
8319: . time - The time
8320: . localU - The input field vector; may be `NULL` if projection is defined purely by coordinates
8321: . funcs - The functions to evaluate, one per field
8322: - mode - The insertion mode for values
8324: Output Parameter:
8325: . localX - The output vector
8327: Calling sequence of `funcs`:
8328: + dim - The spatial dimension
8329: . Nf - The number of input fields
8330: . NfAux - The number of input auxiliary fields
8331: . uOff - The offset of each field in u[]
8332: . uOff_x - The offset of each field in u_x[]
8333: . u - The field values at this point in space
8334: . u_t - The field time derivative at this point in space (or NULL)
8335: . u_x - The field derivatives at this point in space
8336: . aOff - The offset of each auxiliary field in u[]
8337: . aOff_x - The offset of each auxiliary field in u_x[]
8338: . a - The auxiliary field values at this point in space
8339: . a_t - The auxiliary field time derivative at this point in space (or NULL)
8340: . a_x - The auxiliary field derivatives at this point in space
8341: . t - The current time
8342: . x - The coordinates of this point
8343: . numConstants - The number of constants
8344: . constants - The value of each constant
8345: - f - The value of the function at this point in space
8347: Level: intermediate
8349: Note:
8350: There are three different `DM`s that potentially interact in this function. The output `DM`, dm, specifies the layout of the values calculates by funcs.
8351: The input `DM`, attached to U, may be different. For example, you can input the solution over the full domain, but output over a piece of the boundary, or
8352: a subdomain. You can also output a different number of fields than the input, with different discretizations. Last the auxiliary `DM`, attached to the
8353: auxiliary field vector, which is attached to dm, can also be different. It can have a different topology, number of fields, and discretizations.
8355: Developer Notes:
8356: This API is specific to only particular usage of `DM`
8358: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8360: .seealso: [](ch_dmbase), `DM`, `DMProjectField()`, `DMProjectFieldLabelLocal()`,
8361: `DMProjectFunction()`, `DMComputeL2Diff()`
8362: @*/
8363: PetscErrorCode DMProjectFieldLocal(DM dm, PetscReal time, Vec localU, void (**funcs)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f[]), InsertMode mode, Vec localX)
8364: {
8365: PetscFunctionBegin;
8369: PetscUseTypeMethod(dm, projectfieldlocal, time, localU, funcs, mode, localX);
8370: PetscFunctionReturn(PETSC_SUCCESS);
8371: }
8373: /*@C
8374: DMProjectFieldLabelLocal - This projects the given function of the input fields into the function space provided, putting the coefficients in a local vector, calculating only over the portion of the domain specified by the label.
8376: Not Collective
8378: Input Parameters:
8379: + dm - The `DM`
8380: . time - The time
8381: . label - The `DMLabel` marking the portion of the domain to output
8382: . numIds - The number of label ids to use
8383: . ids - The label ids to use for marking
8384: . Nc - The number of components to set in the output, or `PETSC_DETERMINE` for all components
8385: . comps - The components to set in the output, or `NULL` for all components
8386: . localU - The input field vector
8387: . funcs - The functions to evaluate, one per field
8388: - mode - The insertion mode for values
8390: Output Parameter:
8391: . localX - The output vector
8393: Calling sequence of `funcs`:
8394: + dim - The spatial dimension
8395: . Nf - The number of input fields
8396: . NfAux - The number of input auxiliary fields
8397: . uOff - The offset of each field in u[]
8398: . uOff_x - The offset of each field in u_x[]
8399: . u - The field values at this point in space
8400: . u_t - The field time derivative at this point in space (or NULL)
8401: . u_x - The field derivatives at this point in space
8402: . aOff - The offset of each auxiliary field in u[]
8403: . aOff_x - The offset of each auxiliary field in u_x[]
8404: . a - The auxiliary field values at this point in space
8405: . a_t - The auxiliary field time derivative at this point in space (or NULL)
8406: . a_x - The auxiliary field derivatives at this point in space
8407: . t - The current time
8408: . x - The coordinates of this point
8409: . numConstants - The number of constants
8410: . constants - The value of each constant
8411: - f - The value of the function at this point in space
8413: Level: intermediate
8415: Note:
8416: There are three different `DM`s that potentially interact in this function. The output `DM`, dm, specifies the layout of the values calculates by funcs.
8417: The input `DM`, attached to localU, may be different. For example, you can input the solution over the full domain, but output over a piece of the boundary, or
8418: a subdomain. You can also output a different number of fields than the input, with different discretizations. Last the auxiliary `DM`, attached to the
8419: auxiliary field vector, which is attached to dm, can also be different. It can have a different topology, number of fields, and discretizations.
8421: Developer Notes:
8422: This API is specific to only particular usage of `DM`
8424: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8426: .seealso: [](ch_dmbase), `DM`, `DMProjectField()`, `DMProjectFieldLabel()`, `DMProjectFunction()`, `DMComputeL2Diff()`
8427: @*/
8428: PetscErrorCode DMProjectFieldLabelLocal(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], Vec localU, void (**funcs)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f[]), InsertMode mode, Vec localX)
8429: {
8430: PetscFunctionBegin;
8434: PetscUseTypeMethod(dm, projectfieldlabellocal, time, label, numIds, ids, Nc, comps, localU, funcs, mode, localX);
8435: PetscFunctionReturn(PETSC_SUCCESS);
8436: }
8438: /*@C
8439: DMProjectFieldLabel - This projects the given function of the input fields into the function space provided, putting the coefficients in a global vector, calculating only over the portion of the domain specified by the label.
8441: Not Collective
8443: Input Parameters:
8444: + dm - The `DM`
8445: . time - The time
8446: . label - The `DMLabel` marking the portion of the domain to output
8447: . numIds - The number of label ids to use
8448: . ids - The label ids to use for marking
8449: . Nc - The number of components to set in the output, or `PETSC_DETERMINE` for all components
8450: . comps - The components to set in the output, or `NULL` for all components
8451: . U - The input field vector
8452: . funcs - The functions to evaluate, one per field
8453: - mode - The insertion mode for values
8455: Output Parameter:
8456: . X - The output vector
8458: Calling sequence of `funcs`:
8459: + dim - The spatial dimension
8460: . Nf - The number of input fields
8461: . NfAux - The number of input auxiliary fields
8462: . uOff - The offset of each field in u[]
8463: . uOff_x - The offset of each field in u_x[]
8464: . u - The field values at this point in space
8465: . u_t - The field time derivative at this point in space (or NULL)
8466: . u_x - The field derivatives at this point in space
8467: . aOff - The offset of each auxiliary field in u[]
8468: . aOff_x - The offset of each auxiliary field in u_x[]
8469: . a - The auxiliary field values at this point in space
8470: . a_t - The auxiliary field time derivative at this point in space (or NULL)
8471: . a_x - The auxiliary field derivatives at this point in space
8472: . t - The current time
8473: . x - The coordinates of this point
8474: . numConstants - The number of constants
8475: . constants - The value of each constant
8476: - f - The value of the function at this point in space
8478: Level: intermediate
8480: Note:
8481: There are three different `DM`s that potentially interact in this function. The output `DM`, dm, specifies the layout of the values calculates by funcs.
8482: The input `DM`, attached to U, may be different. For example, you can input the solution over the full domain, but output over a piece of the boundary, or
8483: a subdomain. You can also output a different number of fields than the input, with different discretizations. Last the auxiliary `DM`, attached to the
8484: auxiliary field vector, which is attached to dm, can also be different. It can have a different topology, number of fields, and discretizations.
8486: Developer Notes:
8487: This API is specific to only particular usage of `DM`
8489: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8491: .seealso: [](ch_dmbase), `DM`, `DMProjectField()`, `DMProjectFieldLabelLocal()`, `DMProjectFunction()`, `DMComputeL2Diff()`
8492: @*/
8493: PetscErrorCode DMProjectFieldLabel(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], Vec U, void (**funcs)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f[]), InsertMode mode, Vec X)
8494: {
8495: DM dmIn;
8496: Vec localU, localX;
8498: PetscFunctionBegin;
8500: PetscCall(VecGetDM(U, &dmIn));
8501: PetscCall(DMGetLocalVector(dmIn, &localU));
8502: PetscCall(DMGetLocalVector(dm, &localX));
8503: PetscCall(VecSet(localX, 0.));
8504: PetscCall(DMGlobalToLocalBegin(dmIn, U, mode, localU));
8505: PetscCall(DMGlobalToLocalEnd(dmIn, U, mode, localU));
8506: PetscCall(DMProjectFieldLabelLocal(dm, time, label, numIds, ids, Nc, comps, localU, funcs, mode, localX));
8507: PetscCall(DMLocalToGlobalBegin(dm, localX, mode, X));
8508: PetscCall(DMLocalToGlobalEnd(dm, localX, mode, X));
8509: PetscCall(DMRestoreLocalVector(dm, &localX));
8510: PetscCall(DMRestoreLocalVector(dmIn, &localU));
8511: PetscFunctionReturn(PETSC_SUCCESS);
8512: }
8514: /*@C
8515: DMProjectBdFieldLabelLocal - This projects the given function of the input fields into the function space provided, putting the coefficients in a local vector, calculating only over the portion of the domain boundary specified by the label.
8517: Not Collective
8519: Input Parameters:
8520: + dm - The `DM`
8521: . time - The time
8522: . label - The `DMLabel` marking the portion of the domain boundary to output
8523: . numIds - The number of label ids to use
8524: . ids - The label ids to use for marking
8525: . Nc - The number of components to set in the output, or `PETSC_DETERMINE` for all components
8526: . comps - The components to set in the output, or `NULL` for all components
8527: . localU - The input field vector
8528: . funcs - The functions to evaluate, one per field
8529: - mode - The insertion mode for values
8531: Output Parameter:
8532: . localX - The output vector
8534: Calling sequence of `funcs`:
8535: + dim - The spatial dimension
8536: . Nf - The number of input fields
8537: . NfAux - The number of input auxiliary fields
8538: . uOff - The offset of each field in u[]
8539: . uOff_x - The offset of each field in u_x[]
8540: . u - The field values at this point in space
8541: . u_t - The field time derivative at this point in space (or NULL)
8542: . u_x - The field derivatives at this point in space
8543: . aOff - The offset of each auxiliary field in u[]
8544: . aOff_x - The offset of each auxiliary field in u_x[]
8545: . a - The auxiliary field values at this point in space
8546: . a_t - The auxiliary field time derivative at this point in space (or NULL)
8547: . a_x - The auxiliary field derivatives at this point in space
8548: . t - The current time
8549: . x - The coordinates of this point
8550: . n - The face normal
8551: . numConstants - The number of constants
8552: . constants - The value of each constant
8553: - f - The value of the function at this point in space
8555: Level: intermediate
8557: Note:
8558: There are three different `DM`s that potentially interact in this function. The output `DM`, dm, specifies the layout of the values calculates by funcs.
8559: The input `DM`, attached to U, may be different. For example, you can input the solution over the full domain, but output over a piece of the boundary, or
8560: a subdomain. You can also output a different number of fields than the input, with different discretizations. Last the auxiliary `DM`, attached to the
8561: auxiliary field vector, which is attached to dm, can also be different. It can have a different topology, number of fields, and discretizations.
8563: Developer Notes:
8564: This API is specific to only particular usage of `DM`
8566: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8568: .seealso: [](ch_dmbase), `DM`, `DMProjectField()`, `DMProjectFieldLabelLocal()`, `DMProjectFunction()`, `DMComputeL2Diff()`
8569: @*/
8570: PetscErrorCode DMProjectBdFieldLabelLocal(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], Vec localU, void (**funcs)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f[]), InsertMode mode, Vec localX)
8571: {
8572: PetscFunctionBegin;
8576: PetscUseTypeMethod(dm, projectbdfieldlabellocal, time, label, numIds, ids, Nc, comps, localU, funcs, mode, localX);
8577: PetscFunctionReturn(PETSC_SUCCESS);
8578: }
8580: /*@C
8581: DMComputeL2Diff - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h.
8583: Collective
8585: Input Parameters:
8586: + dm - The `DM`
8587: . time - The time
8588: . funcs - The functions to evaluate for each field component
8589: . ctxs - Optional array of contexts to pass to each function, or NULL.
8590: - X - The coefficient vector u_h, a global vector
8592: Output Parameter:
8593: . diff - The diff ||u - u_h||_2
8595: Level: developer
8597: Developer Notes:
8598: This API is specific to only particular usage of `DM`
8600: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8602: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
8603: @*/
8604: PetscErrorCode DMComputeL2Diff(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
8605: {
8606: PetscFunctionBegin;
8609: PetscUseTypeMethod(dm, computel2diff, time, funcs, ctxs, X, diff);
8610: PetscFunctionReturn(PETSC_SUCCESS);
8611: }
8613: /*@C
8614: DMComputeL2GradientDiff - This function computes the L_2 difference between the gradient of a function u and an FEM interpolant solution grad u_h.
8616: Collective
8618: Input Parameters:
8619: + dm - The `DM`
8620: . time - The time
8621: . funcs - The gradient functions to evaluate for each field component
8622: . ctxs - Optional array of contexts to pass to each function, or NULL.
8623: . X - The coefficient vector u_h, a global vector
8624: - n - The vector to project along
8626: Output Parameter:
8627: . diff - The diff ||(grad u - grad u_h) . n||_2
8629: Level: developer
8631: Developer Notes:
8632: This API is specific to only particular usage of `DM`
8634: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8636: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMComputeL2FieldDiff()`
8637: @*/
8638: PetscErrorCode DMComputeL2GradientDiff(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, const PetscReal n[], PetscReal *diff)
8639: {
8640: PetscFunctionBegin;
8643: PetscUseTypeMethod(dm, computel2gradientdiff, time, funcs, ctxs, X, n, diff);
8644: PetscFunctionReturn(PETSC_SUCCESS);
8645: }
8647: /*@C
8648: DMComputeL2FieldDiff - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h, separated into field components.
8650: Collective
8652: Input Parameters:
8653: + dm - The `DM`
8654: . time - The time
8655: . funcs - The functions to evaluate for each field component
8656: . ctxs - Optional array of contexts to pass to each function, or NULL.
8657: - X - The coefficient vector u_h, a global vector
8659: Output Parameter:
8660: . diff - The array of differences, ||u^f - u^f_h||_2
8662: Level: developer
8664: Developer Notes:
8665: This API is specific to only particular usage of `DM`
8667: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8669: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMComputeL2GradientDiff()`
8670: @*/
8671: PetscErrorCode DMComputeL2FieldDiff(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal diff[])
8672: {
8673: PetscFunctionBegin;
8676: PetscUseTypeMethod(dm, computel2fielddiff, time, funcs, ctxs, X, diff);
8677: PetscFunctionReturn(PETSC_SUCCESS);
8678: }
8680: /*@C
8681: DMGetNeighbors - Gets an array containing the MPI ranks of all the processes neighbors
8683: Not Collective
8685: Input Parameter:
8686: . dm - The `DM`
8688: Output Parameters:
8689: + nranks - the number of neighbours
8690: - ranks - the neighbors ranks
8692: Level: beginner
8694: Note:
8695: Do not free the array, it is freed when the `DM` is destroyed.
8697: .seealso: [](ch_dmbase), `DM`, `DMDAGetNeighbors()`, `PetscSFGetRootRanks()`
8698: @*/
8699: PetscErrorCode DMGetNeighbors(DM dm, PetscInt *nranks, const PetscMPIInt *ranks[])
8700: {
8701: PetscFunctionBegin;
8703: PetscUseTypeMethod(dm, getneighbors, nranks, ranks);
8704: PetscFunctionReturn(PETSC_SUCCESS);
8705: }
8707: #include <petsc/private/matimpl.h>
8709: /*
8710: Converts the input vector to a ghosted vector and then calls the standard coloring code.
8711: This must be a different function because it requires DM which is not defined in the Mat library
8712: */
8713: static PetscErrorCode MatFDColoringApply_AIJDM(Mat J, MatFDColoring coloring, Vec x1, void *sctx)
8714: {
8715: PetscFunctionBegin;
8716: if (coloring->ctype == IS_COLORING_LOCAL) {
8717: Vec x1local;
8718: DM dm;
8719: PetscCall(MatGetDM(J, &dm));
8720: PetscCheck(dm, PetscObjectComm((PetscObject)J), PETSC_ERR_ARG_INCOMP, "IS_COLORING_LOCAL requires a DM");
8721: PetscCall(DMGetLocalVector(dm, &x1local));
8722: PetscCall(DMGlobalToLocalBegin(dm, x1, INSERT_VALUES, x1local));
8723: PetscCall(DMGlobalToLocalEnd(dm, x1, INSERT_VALUES, x1local));
8724: x1 = x1local;
8725: }
8726: PetscCall(MatFDColoringApply_AIJ(J, coloring, x1, sctx));
8727: if (coloring->ctype == IS_COLORING_LOCAL) {
8728: DM dm;
8729: PetscCall(MatGetDM(J, &dm));
8730: PetscCall(DMRestoreLocalVector(dm, &x1));
8731: }
8732: PetscFunctionReturn(PETSC_SUCCESS);
8733: }
8735: /*@
8736: MatFDColoringUseDM - allows a `MatFDColoring` object to use the `DM` associated with the matrix to compute a `IS_COLORING_LOCAL` coloring
8738: Input Parameters:
8739: + coloring - The matrix to get the `DM` from
8740: - fdcoloring - the `MatFDColoring` object
8742: Level: advanced
8744: Developer Note:
8745: This routine exists because the PETSc `Mat` library does not know about the `DM` objects
8747: .seealso: [](ch_dmbase), `DM`, `MatFDColoring`, `MatFDColoringCreate()`, `ISColoringType`
8748: @*/
8749: PetscErrorCode MatFDColoringUseDM(Mat coloring, MatFDColoring fdcoloring)
8750: {
8751: PetscFunctionBegin;
8752: coloring->ops->fdcoloringapply = MatFDColoringApply_AIJDM;
8753: PetscFunctionReturn(PETSC_SUCCESS);
8754: }
8756: /*@
8757: DMGetCompatibility - determine if two `DM`s are compatible
8759: Collective
8761: Input Parameters:
8762: + dm1 - the first `DM`
8763: - dm2 - the second `DM`
8765: Output Parameters:
8766: + compatible - whether or not the two `DM`s are compatible
8767: - set - whether or not the compatible value was actually determined and set
8769: Level: advanced
8771: Notes:
8772: Two `DM`s are deemed compatible if they represent the same parallel decomposition
8773: of the same topology. This implies that the section (field data) on one
8774: "makes sense" with respect to the topology and parallel decomposition of the other.
8775: Loosely speaking, compatible `DM`s represent the same domain and parallel
8776: decomposition, but hold different data.
8778: Typically, one would confirm compatibility if intending to simultaneously iterate
8779: over a pair of vectors obtained from different `DM`s.
8781: For example, two `DMDA` objects are compatible if they have the same local
8782: and global sizes and the same stencil width. They can have different numbers
8783: of degrees of freedom per node. Thus, one could use the node numbering from
8784: either `DM` in bounds for a loop over vectors derived from either `DM`.
8786: Consider the operation of summing data living on a 2-dof `DMDA` to data living
8787: on a 1-dof `DMDA`, which should be compatible, as in the following snippet.
8788: .vb
8789: ...
8790: PetscCall(DMGetCompatibility(da1,da2,&compatible,&set));
8791: if (set && compatible) {
8792: PetscCall(DMDAVecGetArrayDOF(da1,vec1,&arr1));
8793: PetscCall(DMDAVecGetArrayDOF(da2,vec2,&arr2));
8794: PetscCall(DMDAGetCorners(da1,&x,&y,NULL,&m,&n,NULL));
8795: for (j=y; j<y+n; ++j) {
8796: for (i=x; i<x+m, ++i) {
8797: arr1[j][i][0] = arr2[j][i][0] + arr2[j][i][1];
8798: }
8799: }
8800: PetscCall(DMDAVecRestoreArrayDOF(da1,vec1,&arr1));
8801: PetscCall(DMDAVecRestoreArrayDOF(da2,vec2,&arr2));
8802: } else {
8803: SETERRQ(PetscObjectComm((PetscObject)da1,PETSC_ERR_ARG_INCOMP,"DMDA objects incompatible");
8804: }
8805: ...
8806: .ve
8808: Checking compatibility might be expensive for a given implementation of `DM`,
8809: or might be impossible to unambiguously confirm or deny. For this reason,
8810: this function may decline to determine compatibility, and hence users should
8811: always check the "set" output parameter.
8813: A `DM` is always compatible with itself.
8815: In the current implementation, `DM`s which live on "unequal" communicators
8816: (MPI_UNEQUAL in the terminology of MPI_Comm_compare()) are always deemed
8817: incompatible.
8819: This function is labeled "Collective," as information about all subdomains
8820: is required on each rank. However, in `DM` implementations which store all this
8821: information locally, this function may be merely "Logically Collective".
8823: Developer Note:
8824: Compatibility is assumed to be a symmetric concept; `DM` A is compatible with `DM` B
8825: iff B is compatible with A. Thus, this function checks the implementations
8826: of both dm and dmc (if they are of different types), attempting to determine
8827: compatibility. It is left to `DM` implementers to ensure that symmetry is
8828: preserved. The simplest way to do this is, when implementing type-specific
8829: logic for this function, is to check for existing logic in the implementation
8830: of other `DM` types and let *set = PETSC_FALSE if found.
8832: .seealso: [](ch_dmbase), `DM`, `DMDACreateCompatibleDMDA()`, `DMStagCreateCompatibleDMStag()`
8833: @*/
8834: PetscErrorCode DMGetCompatibility(DM dm1, DM dm2, PetscBool *compatible, PetscBool *set)
8835: {
8836: PetscMPIInt compareResult;
8837: DMType type, type2;
8838: PetscBool sameType;
8840: PetscFunctionBegin;
8844: /* Declare a DM compatible with itself */
8845: if (dm1 == dm2) {
8846: *set = PETSC_TRUE;
8847: *compatible = PETSC_TRUE;
8848: PetscFunctionReturn(PETSC_SUCCESS);
8849: }
8851: /* Declare a DM incompatible with a DM that lives on an "unequal"
8852: communicator. Note that this does not preclude compatibility with
8853: DMs living on "congruent" or "similar" communicators, but this must be
8854: determined by the implementation-specific logic */
8855: PetscCallMPI(MPI_Comm_compare(PetscObjectComm((PetscObject)dm1), PetscObjectComm((PetscObject)dm2), &compareResult));
8856: if (compareResult == MPI_UNEQUAL) {
8857: *set = PETSC_TRUE;
8858: *compatible = PETSC_FALSE;
8859: PetscFunctionReturn(PETSC_SUCCESS);
8860: }
8862: /* Pass to the implementation-specific routine, if one exists. */
8863: if (dm1->ops->getcompatibility) {
8864: PetscUseTypeMethod(dm1, getcompatibility, dm2, compatible, set);
8865: if (*set) PetscFunctionReturn(PETSC_SUCCESS);
8866: }
8868: /* If dm1 and dm2 are of different types, then attempt to check compatibility
8869: with an implementation of this function from dm2 */
8870: PetscCall(DMGetType(dm1, &type));
8871: PetscCall(DMGetType(dm2, &type2));
8872: PetscCall(PetscStrcmp(type, type2, &sameType));
8873: if (!sameType && dm2->ops->getcompatibility) {
8874: PetscUseTypeMethod(dm2, getcompatibility, dm1, compatible, set); /* Note argument order */
8875: } else {
8876: *set = PETSC_FALSE;
8877: }
8878: PetscFunctionReturn(PETSC_SUCCESS);
8879: }
8881: /*@C
8882: DMMonitorSet - Sets an additional monitor function that is to be used after a solve to monitor discretization performance.
8884: Logically Collective
8886: Input Parameters:
8887: + dm - the `DM`
8888: . f - the monitor function
8889: . mctx - [optional] user-defined context for private data for the monitor routine (use `NULL` if no context is desired)
8890: - monitordestroy - [optional] routine that frees monitor context (may be `NULL`), see `PetscCtxDestroyFn` for the calling sequence
8892: Options Database Key:
8893: . -dm_monitor_cancel - cancels all monitors that have been hardwired into a code by calls to `DMMonitorSet()`, but
8894: does not cancel those set via the options database.
8896: Level: intermediate
8898: Note:
8899: Several different monitoring routines may be set by calling
8900: `DMMonitorSet()` multiple times or with `DMMonitorSetFromOptions()`; all will be called in the
8901: order in which they were set.
8903: Fortran Note:
8904: Only a single monitor function can be set for each `DM` object
8906: Developer Note:
8907: This API has a generic name but seems specific to a very particular aspect of the use of `DM`
8909: .seealso: [](ch_dmbase), `DM`, `DMMonitorCancel()`, `DMMonitorSetFromOptions()`, `DMMonitor()`, `PetscCtxDestroyFn`
8910: @*/
8911: PetscErrorCode DMMonitorSet(DM dm, PetscErrorCode (*f)(DM, void *), void *mctx, PetscCtxDestroyFn *monitordestroy)
8912: {
8913: PetscInt m;
8915: PetscFunctionBegin;
8917: for (m = 0; m < dm->numbermonitors; ++m) {
8918: PetscBool identical;
8920: PetscCall(PetscMonitorCompare((PetscErrorCode (*)(void))f, mctx, monitordestroy, (PetscErrorCode (*)(void))dm->monitor[m], dm->monitorcontext[m], dm->monitordestroy[m], &identical));
8921: if (identical) PetscFunctionReturn(PETSC_SUCCESS);
8922: }
8923: PetscCheck(dm->numbermonitors < MAXDMMONITORS, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Too many monitors set");
8924: dm->monitor[dm->numbermonitors] = f;
8925: dm->monitordestroy[dm->numbermonitors] = monitordestroy;
8926: dm->monitorcontext[dm->numbermonitors++] = mctx;
8927: PetscFunctionReturn(PETSC_SUCCESS);
8928: }
8930: /*@
8931: DMMonitorCancel - Clears all the monitor functions for a `DM` object.
8933: Logically Collective
8935: Input Parameter:
8936: . dm - the DM
8938: Options Database Key:
8939: . -dm_monitor_cancel - cancels all monitors that have been hardwired
8940: into a code by calls to `DMonitorSet()`, but does not cancel those
8941: set via the options database
8943: Level: intermediate
8945: Note:
8946: There is no way to clear one specific monitor from a `DM` object.
8948: .seealso: [](ch_dmbase), `DM`, `DMMonitorSet()`, `DMMonitorSetFromOptions()`, `DMMonitor()`
8949: @*/
8950: PetscErrorCode DMMonitorCancel(DM dm)
8951: {
8952: PetscInt m;
8954: PetscFunctionBegin;
8956: for (m = 0; m < dm->numbermonitors; ++m) {
8957: if (dm->monitordestroy[m]) PetscCall((*dm->monitordestroy[m])(&dm->monitorcontext[m]));
8958: }
8959: dm->numbermonitors = 0;
8960: PetscFunctionReturn(PETSC_SUCCESS);
8961: }
8963: /*@C
8964: DMMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
8966: Collective
8968: Input Parameters:
8969: + dm - `DM` object you wish to monitor
8970: . name - the monitor type one is seeking
8971: . help - message indicating what monitoring is done
8972: . manual - manual page for the monitor
8973: . monitor - the monitor function, this must use a `PetscViewerFormat` as its context
8974: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the `DM` or `PetscViewer` objects
8976: Output Parameter:
8977: . flg - Flag set if the monitor was created
8979: Level: developer
8981: .seealso: [](ch_dmbase), `DM`, `PetscOptionsCreateViewer()`, `PetscOptionsGetReal()`, `PetscOptionsHasName()`, `PetscOptionsGetString()`,
8982: `PetscOptionsGetIntArray()`, `PetscOptionsGetRealArray()`, `PetscOptionsBool()`
8983: `PetscOptionsInt()`, `PetscOptionsString()`, `PetscOptionsReal()`,
8984: `PetscOptionsName()`, `PetscOptionsBegin()`, `PetscOptionsEnd()`, `PetscOptionsHeadBegin()`,
8985: `PetscOptionsStringArray()`, `PetscOptionsRealArray()`, `PetscOptionsScalar()`,
8986: `PetscOptionsBoolGroupBegin()`, `PetscOptionsBoolGroup()`, `PetscOptionsBoolGroupEnd()`,
8987: `PetscOptionsFList()`, `PetscOptionsEList()`, `DMMonitor()`, `DMMonitorSet()`
8988: @*/
8989: PetscErrorCode DMMonitorSetFromOptions(DM dm, const char name[], const char help[], const char manual[], PetscErrorCode (*monitor)(DM, void *), PetscErrorCode (*monitorsetup)(DM, PetscViewerAndFormat *), PetscBool *flg)
8990: {
8991: PetscViewer viewer;
8992: PetscViewerFormat format;
8994: PetscFunctionBegin;
8996: PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)dm), ((PetscObject)dm)->options, ((PetscObject)dm)->prefix, name, &viewer, &format, flg));
8997: if (*flg) {
8998: PetscViewerAndFormat *vf;
9000: PetscCall(PetscViewerAndFormatCreate(viewer, format, &vf));
9001: PetscCall(PetscViewerDestroy(&viewer));
9002: if (monitorsetup) PetscCall((*monitorsetup)(dm, vf));
9003: PetscCall(DMMonitorSet(dm, monitor, vf, (PetscCtxDestroyFn *)PetscViewerAndFormatDestroy));
9004: }
9005: PetscFunctionReturn(PETSC_SUCCESS);
9006: }
9008: /*@
9009: DMMonitor - runs the user provided monitor routines, if they exist
9011: Collective
9013: Input Parameter:
9014: . dm - The `DM`
9016: Level: developer
9018: Developer Note:
9019: Note should indicate when during the life of the `DM` the monitor is run. It appears to be
9020: related to the discretization process seems rather specialized since some `DM` have no
9021: concept of discretization.
9023: .seealso: [](ch_dmbase), `DM`, `DMMonitorSet()`, `DMMonitorSetFromOptions()`
9024: @*/
9025: PetscErrorCode DMMonitor(DM dm)
9026: {
9027: PetscInt m;
9029: PetscFunctionBegin;
9030: if (!dm) PetscFunctionReturn(PETSC_SUCCESS);
9032: for (m = 0; m < dm->numbermonitors; ++m) PetscCall((*dm->monitor[m])(dm, dm->monitorcontext[m]));
9033: PetscFunctionReturn(PETSC_SUCCESS);
9034: }
9036: /*@
9037: DMComputeError - Computes the error assuming the user has provided the exact solution functions
9039: Collective
9041: Input Parameters:
9042: + dm - The `DM`
9043: - sol - The solution vector
9045: Input/Output Parameter:
9046: . errors - An array of length Nf, the number of fields, or `NULL` for no output; on output
9047: contains the error in each field
9049: Output Parameter:
9050: . errorVec - A vector to hold the cellwise error (may be `NULL`)
9052: Level: developer
9054: Note:
9055: The exact solutions come from the `PetscDS` object, and the time comes from `DMGetOutputSequenceNumber()`.
9057: .seealso: [](ch_dmbase), `DM`, `DMMonitorSet()`, `DMGetRegionNumDS()`, `PetscDSGetExactSolution()`, `DMGetOutputSequenceNumber()`
9058: @*/
9059: PetscErrorCode DMComputeError(DM dm, Vec sol, PetscReal errors[], Vec *errorVec)
9060: {
9061: PetscErrorCode (**exactSol)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar[], void *);
9062: void **ctxs;
9063: PetscReal time;
9064: PetscInt Nf, f, Nds, s;
9066: PetscFunctionBegin;
9067: PetscCall(DMGetNumFields(dm, &Nf));
9068: PetscCall(PetscCalloc2(Nf, &exactSol, Nf, &ctxs));
9069: PetscCall(DMGetNumDS(dm, &Nds));
9070: for (s = 0; s < Nds; ++s) {
9071: PetscDS ds;
9072: DMLabel label;
9073: IS fieldIS;
9074: const PetscInt *fields;
9075: PetscInt dsNf;
9077: PetscCall(DMGetRegionNumDS(dm, s, &label, &fieldIS, &ds, NULL));
9078: PetscCall(PetscDSGetNumFields(ds, &dsNf));
9079: if (fieldIS) PetscCall(ISGetIndices(fieldIS, &fields));
9080: for (f = 0; f < dsNf; ++f) {
9081: const PetscInt field = fields[f];
9082: PetscCall(PetscDSGetExactSolution(ds, field, &exactSol[field], &ctxs[field]));
9083: }
9084: if (fieldIS) PetscCall(ISRestoreIndices(fieldIS, &fields));
9085: }
9086: for (f = 0; f < Nf; ++f) PetscCheck(exactSol[f], PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "DS must contain exact solution functions in order to calculate error, missing for field %" PetscInt_FMT, f);
9087: PetscCall(DMGetOutputSequenceNumber(dm, NULL, &time));
9088: if (errors) PetscCall(DMComputeL2FieldDiff(dm, time, exactSol, ctxs, sol, errors));
9089: if (errorVec) {
9090: DM edm;
9091: DMPolytopeType ct;
9092: PetscBool simplex;
9093: PetscInt dim, cStart, Nf;
9095: PetscCall(DMClone(dm, &edm));
9096: PetscCall(DMGetDimension(edm, &dim));
9097: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, NULL));
9098: PetscCall(DMPlexGetCellType(dm, cStart, &ct));
9099: simplex = DMPolytopeTypeGetNumVertices(ct) == DMPolytopeTypeGetDim(ct) + 1 ? PETSC_TRUE : PETSC_FALSE;
9100: PetscCall(DMGetNumFields(dm, &Nf));
9101: for (f = 0; f < Nf; ++f) {
9102: PetscFE fe, efe;
9103: PetscQuadrature q;
9104: const char *name;
9106: PetscCall(DMGetField(dm, f, NULL, (PetscObject *)&fe));
9107: PetscCall(PetscFECreateLagrange(PETSC_COMM_SELF, dim, Nf, simplex, 0, PETSC_DETERMINE, &efe));
9108: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
9109: PetscCall(PetscObjectSetName((PetscObject)efe, name));
9110: PetscCall(PetscFEGetQuadrature(fe, &q));
9111: PetscCall(PetscFESetQuadrature(efe, q));
9112: PetscCall(DMSetField(edm, f, NULL, (PetscObject)efe));
9113: PetscCall(PetscFEDestroy(&efe));
9114: }
9115: PetscCall(DMCreateDS(edm));
9117: PetscCall(DMCreateGlobalVector(edm, errorVec));
9118: PetscCall(PetscObjectSetName((PetscObject)*errorVec, "Error"));
9119: PetscCall(DMPlexComputeL2DiffVec(dm, time, exactSol, ctxs, sol, *errorVec));
9120: PetscCall(DMDestroy(&edm));
9121: }
9122: PetscCall(PetscFree2(exactSol, ctxs));
9123: PetscFunctionReturn(PETSC_SUCCESS);
9124: }
9126: /*@
9127: DMGetNumAuxiliaryVec - Get the number of auxiliary vectors associated with this `DM`
9129: Not Collective
9131: Input Parameter:
9132: . dm - The `DM`
9134: Output Parameter:
9135: . numAux - The number of auxiliary data vectors
9137: Level: advanced
9139: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMSetAuxiliaryVec()`, `DMGetAuxiliaryLabels()`, `DMGetAuxiliaryVec()`
9140: @*/
9141: PetscErrorCode DMGetNumAuxiliaryVec(DM dm, PetscInt *numAux)
9142: {
9143: PetscFunctionBegin;
9145: PetscCall(PetscHMapAuxGetSize(dm->auxData, numAux));
9146: PetscFunctionReturn(PETSC_SUCCESS);
9147: }
9149: /*@
9150: DMGetAuxiliaryVec - Get the auxiliary vector for region specified by the given label and value, and equation part
9152: Not Collective
9154: Input Parameters:
9155: + dm - The `DM`
9156: . label - The `DMLabel`
9157: . value - The label value indicating the region
9158: - part - The equation part, or 0 if unused
9160: Output Parameter:
9161: . aux - The `Vec` holding auxiliary field data
9163: Level: advanced
9165: Note:
9166: If no auxiliary vector is found for this (label, value), (NULL, 0, 0) is checked as well.
9168: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMSetAuxiliaryVec()`, `DMGetNumAuxiliaryVec()`, `DMGetAuxiliaryLabels()`
9169: @*/
9170: PetscErrorCode DMGetAuxiliaryVec(DM dm, DMLabel label, PetscInt value, PetscInt part, Vec *aux)
9171: {
9172: PetscHashAuxKey key, wild = {NULL, 0, 0};
9173: PetscBool has;
9175: PetscFunctionBegin;
9178: key.label = label;
9179: key.value = value;
9180: key.part = part;
9181: PetscCall(PetscHMapAuxHas(dm->auxData, key, &has));
9182: if (has) PetscCall(PetscHMapAuxGet(dm->auxData, key, aux));
9183: else PetscCall(PetscHMapAuxGet(dm->auxData, wild, aux));
9184: PetscFunctionReturn(PETSC_SUCCESS);
9185: }
9187: /*@
9188: DMSetAuxiliaryVec - Set an auxiliary vector for region specified by the given label and value, and equation part
9190: Not Collective because auxiliary vectors are not parallel
9192: Input Parameters:
9193: + dm - The `DM`
9194: . label - The `DMLabel`
9195: . value - The label value indicating the region
9196: . part - The equation part, or 0 if unused
9197: - aux - The `Vec` holding auxiliary field data
9199: Level: advanced
9201: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMGetAuxiliaryVec()`, `DMGetAuxiliaryLabels()`, `DMCopyAuxiliaryVec()`
9202: @*/
9203: PetscErrorCode DMSetAuxiliaryVec(DM dm, DMLabel label, PetscInt value, PetscInt part, Vec aux)
9204: {
9205: Vec old;
9206: PetscHashAuxKey key;
9208: PetscFunctionBegin;
9211: key.label = label;
9212: key.value = value;
9213: key.part = part;
9214: PetscCall(PetscHMapAuxGet(dm->auxData, key, &old));
9215: PetscCall(PetscObjectReference((PetscObject)aux));
9216: if (!aux) PetscCall(PetscHMapAuxDel(dm->auxData, key));
9217: else PetscCall(PetscHMapAuxSet(dm->auxData, key, aux));
9218: PetscCall(VecDestroy(&old));
9219: PetscFunctionReturn(PETSC_SUCCESS);
9220: }
9222: /*@
9223: DMGetAuxiliaryLabels - Get the labels, values, and parts for all auxiliary vectors in this `DM`
9225: Not Collective
9227: Input Parameter:
9228: . dm - The `DM`
9230: Output Parameters:
9231: + labels - The `DMLabel`s for each `Vec`
9232: . values - The label values for each `Vec`
9233: - parts - The equation parts for each `Vec`
9235: Level: advanced
9237: Note:
9238: The arrays passed in must be at least as large as `DMGetNumAuxiliaryVec()`.
9240: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMGetNumAuxiliaryVec()`, `DMGetAuxiliaryVec()`, `DMSetAuxiliaryVec()`, `DMCopyAuxiliaryVec()`
9241: @*/
9242: PetscErrorCode DMGetAuxiliaryLabels(DM dm, DMLabel labels[], PetscInt values[], PetscInt parts[])
9243: {
9244: PetscHashAuxKey *keys;
9245: PetscInt n, i, off = 0;
9247: PetscFunctionBegin;
9249: PetscAssertPointer(labels, 2);
9250: PetscAssertPointer(values, 3);
9251: PetscAssertPointer(parts, 4);
9252: PetscCall(DMGetNumAuxiliaryVec(dm, &n));
9253: PetscCall(PetscMalloc1(n, &keys));
9254: PetscCall(PetscHMapAuxGetKeys(dm->auxData, &off, keys));
9255: for (i = 0; i < n; ++i) {
9256: labels[i] = keys[i].label;
9257: values[i] = keys[i].value;
9258: parts[i] = keys[i].part;
9259: }
9260: PetscCall(PetscFree(keys));
9261: PetscFunctionReturn(PETSC_SUCCESS);
9262: }
9264: /*@
9265: DMCopyAuxiliaryVec - Copy the auxiliary vector data on a `DM` to a new `DM`
9267: Not Collective
9269: Input Parameter:
9270: . dm - The `DM`
9272: Output Parameter:
9273: . dmNew - The new `DM`, now with the same auxiliary data
9275: Level: advanced
9277: Note:
9278: This is a shallow copy of the auxiliary vectors
9280: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMGetNumAuxiliaryVec()`, `DMGetAuxiliaryVec()`, `DMSetAuxiliaryVec()`
9281: @*/
9282: PetscErrorCode DMCopyAuxiliaryVec(DM dm, DM dmNew)
9283: {
9284: PetscFunctionBegin;
9287: if (dm == dmNew) PetscFunctionReturn(PETSC_SUCCESS);
9288: PetscCall(DMClearAuxiliaryVec(dmNew));
9290: PetscCall(PetscHMapAuxDestroy(&dmNew->auxData));
9291: PetscCall(PetscHMapAuxDuplicate(dm->auxData, &dmNew->auxData));
9292: {
9293: Vec *auxData;
9294: PetscInt n, i, off = 0;
9296: PetscCall(PetscHMapAuxGetSize(dmNew->auxData, &n));
9297: PetscCall(PetscMalloc1(n, &auxData));
9298: PetscCall(PetscHMapAuxGetVals(dmNew->auxData, &off, auxData));
9299: for (i = 0; i < n; ++i) PetscCall(PetscObjectReference((PetscObject)auxData[i]));
9300: PetscCall(PetscFree(auxData));
9301: }
9302: PetscFunctionReturn(PETSC_SUCCESS);
9303: }
9305: /*@
9306: DMClearAuxiliaryVec - Destroys the auxiliary vector information and creates a new empty one
9308: Not Collective
9310: Input Parameter:
9311: . dm - The `DM`
9313: Level: advanced
9315: .seealso: [](ch_dmbase), `DM`, `DMCopyAuxiliaryVec()`, `DMGetNumAuxiliaryVec()`, `DMGetAuxiliaryVec()`, `DMSetAuxiliaryVec()`
9316: @*/
9317: PetscErrorCode DMClearAuxiliaryVec(DM dm)
9318: {
9319: Vec *auxData;
9320: PetscInt n, i, off = 0;
9322: PetscFunctionBegin;
9323: PetscCall(PetscHMapAuxGetSize(dm->auxData, &n));
9324: PetscCall(PetscMalloc1(n, &auxData));
9325: PetscCall(PetscHMapAuxGetVals(dm->auxData, &off, auxData));
9326: for (i = 0; i < n; ++i) PetscCall(VecDestroy(&auxData[i]));
9327: PetscCall(PetscFree(auxData));
9328: PetscCall(PetscHMapAuxDestroy(&dm->auxData));
9329: PetscCall(PetscHMapAuxCreate(&dm->auxData));
9330: PetscFunctionReturn(PETSC_SUCCESS);
9331: }
9333: /*@
9334: DMPolytopeMatchOrientation - Determine an orientation (transformation) that takes the source face arrangement to the target face arrangement
9336: Not Collective
9338: Input Parameters:
9339: + ct - The `DMPolytopeType`
9340: . sourceCone - The source arrangement of faces
9341: - targetCone - The target arrangement of faces
9343: Output Parameters:
9344: + ornt - The orientation (transformation) which will take the source arrangement to the target arrangement
9345: - found - Flag indicating that a suitable orientation was found
9347: Level: advanced
9349: Note:
9350: An arrangement is a face order combined with an orientation for each face
9352: Each orientation (transformation) is labeled with an integer from negative `DMPolytopeTypeGetNumArrangements(ct)`/2 to `DMPolytopeTypeGetNumArrangements(ct)`/2
9353: that labels each arrangement (face ordering plus orientation for each face).
9355: See `DMPolytopeMatchVertexOrientation()` to find a new vertex orientation that takes the source vertex arrangement to the target vertex arrangement
9357: .seealso: [](ch_dmbase), `DM`, `DMPolytopeGetOrientation()`, `DMPolytopeMatchVertexOrientation()`, `DMPolytopeGetVertexOrientation()`
9358: @*/
9359: PetscErrorCode DMPolytopeMatchOrientation(DMPolytopeType ct, const PetscInt sourceCone[], const PetscInt targetCone[], PetscInt *ornt, PetscBool *found)
9360: {
9361: const PetscInt cS = DMPolytopeTypeGetConeSize(ct);
9362: const PetscInt nO = DMPolytopeTypeGetNumArrangements(ct) / 2;
9363: PetscInt o, c;
9365: PetscFunctionBegin;
9366: if (!nO) {
9367: *ornt = 0;
9368: *found = PETSC_TRUE;
9369: PetscFunctionReturn(PETSC_SUCCESS);
9370: }
9371: for (o = -nO; o < nO; ++o) {
9372: const PetscInt *arr = DMPolytopeTypeGetArrangement(ct, o);
9374: for (c = 0; c < cS; ++c)
9375: if (sourceCone[arr[c * 2]] != targetCone[c]) break;
9376: if (c == cS) {
9377: *ornt = o;
9378: break;
9379: }
9380: }
9381: *found = o == nO ? PETSC_FALSE : PETSC_TRUE;
9382: PetscFunctionReturn(PETSC_SUCCESS);
9383: }
9385: /*@
9386: DMPolytopeGetOrientation - Determine an orientation (transformation) that takes the source face arrangement to the target face arrangement
9388: Not Collective
9390: Input Parameters:
9391: + ct - The `DMPolytopeType`
9392: . sourceCone - The source arrangement of faces
9393: - targetCone - The target arrangement of faces
9395: Output Parameter:
9396: . ornt - The orientation (transformation) which will take the source arrangement to the target arrangement
9398: Level: advanced
9400: Note:
9401: This function is the same as `DMPolytopeMatchOrientation()` except it will generate an error if no suitable orientation can be found.
9403: Developer Note:
9404: It is unclear why this function needs to exist since one can simply call `DMPolytopeMatchOrientation()` and error if none is found
9406: .seealso: [](ch_dmbase), `DM`, `DMPolytopeType`, `DMPolytopeMatchOrientation()`, `DMPolytopeGetVertexOrientation()`, `DMPolytopeMatchVertexOrientation()`
9407: @*/
9408: PetscErrorCode DMPolytopeGetOrientation(DMPolytopeType ct, const PetscInt sourceCone[], const PetscInt targetCone[], PetscInt *ornt)
9409: {
9410: PetscBool found;
9412: PetscFunctionBegin;
9413: PetscCall(DMPolytopeMatchOrientation(ct, sourceCone, targetCone, ornt, &found));
9414: PetscCheck(found, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not find orientation for %s", DMPolytopeTypes[ct]);
9415: PetscFunctionReturn(PETSC_SUCCESS);
9416: }
9418: /*@
9419: DMPolytopeMatchVertexOrientation - Determine an orientation (transformation) that takes the source vertex arrangement to the target vertex arrangement
9421: Not Collective
9423: Input Parameters:
9424: + ct - The `DMPolytopeType`
9425: . sourceVert - The source arrangement of vertices
9426: - targetVert - The target arrangement of vertices
9428: Output Parameters:
9429: + ornt - The orientation (transformation) which will take the source arrangement to the target arrangement
9430: - found - Flag indicating that a suitable orientation was found
9432: Level: advanced
9434: Notes:
9435: An arrangement is a vertex order
9437: Each orientation (transformation) is labeled with an integer from negative `DMPolytopeTypeGetNumArrangements(ct)`/2 to `DMPolytopeTypeGetNumArrangements(ct)`/2
9438: that labels each arrangement (vertex ordering).
9440: See `DMPolytopeMatchOrientation()` to find a new face orientation that takes the source face arrangement to the target face arrangement
9442: .seealso: [](ch_dmbase), `DM`, `DMPolytopeType`, `DMPolytopeGetOrientation()`, `DMPolytopeMatchOrientation()`, `DMPolytopeTypeGetNumVertices()`, `DMPolytopeTypeGetVertexArrangement()`
9443: @*/
9444: PetscErrorCode DMPolytopeMatchVertexOrientation(DMPolytopeType ct, const PetscInt sourceVert[], const PetscInt targetVert[], PetscInt *ornt, PetscBool *found)
9445: {
9446: const PetscInt cS = DMPolytopeTypeGetNumVertices(ct);
9447: const PetscInt nO = DMPolytopeTypeGetNumArrangements(ct) / 2;
9448: PetscInt o, c;
9450: PetscFunctionBegin;
9451: if (!nO) {
9452: *ornt = 0;
9453: *found = PETSC_TRUE;
9454: PetscFunctionReturn(PETSC_SUCCESS);
9455: }
9456: for (o = -nO; o < nO; ++o) {
9457: const PetscInt *arr = DMPolytopeTypeGetVertexArrangement(ct, o);
9459: for (c = 0; c < cS; ++c)
9460: if (sourceVert[arr[c]] != targetVert[c]) break;
9461: if (c == cS) {
9462: *ornt = o;
9463: break;
9464: }
9465: }
9466: *found = o == nO ? PETSC_FALSE : PETSC_TRUE;
9467: PetscFunctionReturn(PETSC_SUCCESS);
9468: }
9470: /*@
9471: DMPolytopeGetVertexOrientation - Determine an orientation (transformation) that takes the source vertex arrangement to the target vertex arrangement
9473: Not Collective
9475: Input Parameters:
9476: + ct - The `DMPolytopeType`
9477: . sourceCone - The source arrangement of vertices
9478: - targetCone - The target arrangement of vertices
9480: Output Parameter:
9481: . ornt - The orientation (transformation) which will take the source arrangement to the target arrangement
9483: Level: advanced
9485: Note:
9486: This function is the same as `DMPolytopeMatchVertexOrientation()` except it errors if not orientation is possible.
9488: Developer Note:
9489: It is unclear why this function needs to exist since one can simply call `DMPolytopeMatchVertexOrientation()` and error if none is found
9491: .seealso: [](ch_dmbase), `DM`, `DMPolytopeType`, `DMPolytopeMatchVertexOrientation()`, `DMPolytopeGetOrientation()`
9492: @*/
9493: PetscErrorCode DMPolytopeGetVertexOrientation(DMPolytopeType ct, const PetscInt sourceCone[], const PetscInt targetCone[], PetscInt *ornt)
9494: {
9495: PetscBool found;
9497: PetscFunctionBegin;
9498: PetscCall(DMPolytopeMatchVertexOrientation(ct, sourceCone, targetCone, ornt, &found));
9499: PetscCheck(found, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not find orientation for %s", DMPolytopeTypes[ct]);
9500: PetscFunctionReturn(PETSC_SUCCESS);
9501: }
9503: /*@
9504: DMPolytopeInCellTest - Check whether a point lies inside the reference cell of given type
9506: Not Collective
9508: Input Parameters:
9509: + ct - The `DMPolytopeType`
9510: - point - Coordinates of the point
9512: Output Parameter:
9513: . inside - Flag indicating whether the point is inside the reference cell of given type
9515: Level: advanced
9517: .seealso: [](ch_dmbase), `DM`, `DMPolytopeType`, `DMLocatePoints()`
9518: @*/
9519: PetscErrorCode DMPolytopeInCellTest(DMPolytopeType ct, const PetscReal point[], PetscBool *inside)
9520: {
9521: PetscReal sum = 0.0;
9522: PetscInt d;
9524: PetscFunctionBegin;
9525: *inside = PETSC_TRUE;
9526: switch (ct) {
9527: case DM_POLYTOPE_TRIANGLE:
9528: case DM_POLYTOPE_TETRAHEDRON:
9529: for (d = 0; d < DMPolytopeTypeGetDim(ct); ++d) {
9530: if (point[d] < -1.0) {
9531: *inside = PETSC_FALSE;
9532: break;
9533: }
9534: sum += point[d];
9535: }
9536: if (sum > PETSC_SMALL) {
9537: *inside = PETSC_FALSE;
9538: break;
9539: }
9540: break;
9541: case DM_POLYTOPE_QUADRILATERAL:
9542: case DM_POLYTOPE_HEXAHEDRON:
9543: for (d = 0; d < DMPolytopeTypeGetDim(ct); ++d)
9544: if (PetscAbsReal(point[d]) > 1. + PETSC_SMALL) {
9545: *inside = PETSC_FALSE;
9546: break;
9547: }
9548: break;
9549: default:
9550: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unsupported polytope type %s", DMPolytopeTypes[ct]);
9551: }
9552: PetscFunctionReturn(PETSC_SUCCESS);
9553: }
9555: /*@
9556: DMReorderSectionSetDefault - Set flag indicating whether the local section should be reordered by default
9558: Logically collective
9560: Input Parameters:
9561: + dm - The DM
9562: - reorder - Flag for reordering
9564: Level: intermediate
9566: .seealso: `DMReorderSectionGetDefault()`
9567: @*/
9568: PetscErrorCode DMReorderSectionSetDefault(DM dm, DMReorderDefaultFlag reorder)
9569: {
9570: PetscFunctionBegin;
9572: PetscTryMethod(dm, "DMReorderSectionSetDefault_C", (DM, DMReorderDefaultFlag), (dm, reorder));
9573: PetscFunctionReturn(PETSC_SUCCESS);
9574: }
9576: /*@
9577: DMReorderSectionGetDefault - Get flag indicating whether the local section should be reordered by default
9579: Not collective
9581: Input Parameter:
9582: . dm - The DM
9584: Output Parameter:
9585: . reorder - Flag for reordering
9587: Level: intermediate
9589: .seealso: `DMReorderSetDefault()`
9590: @*/
9591: PetscErrorCode DMReorderSectionGetDefault(DM dm, DMReorderDefaultFlag *reorder)
9592: {
9593: PetscFunctionBegin;
9595: PetscAssertPointer(reorder, 2);
9596: *reorder = DM_REORDER_DEFAULT_NOTSET;
9597: PetscTryMethod(dm, "DMReorderSectionGetDefault_C", (DM, DMReorderDefaultFlag *), (dm, reorder));
9598: PetscFunctionReturn(PETSC_SUCCESS);
9599: }
9601: /*@
9602: DMReorderSectionSetType - Set the type of local section reordering
9604: Logically collective
9606: Input Parameters:
9607: + dm - The DM
9608: - reorder - The reordering method
9610: Level: intermediate
9612: .seealso: `DMReorderSectionGetType()`, `DMReorderSectionSetDefault()`
9613: @*/
9614: PetscErrorCode DMReorderSectionSetType(DM dm, MatOrderingType reorder)
9615: {
9616: PetscFunctionBegin;
9618: PetscTryMethod(dm, "DMReorderSectionSetType_C", (DM, MatOrderingType), (dm, reorder));
9619: PetscFunctionReturn(PETSC_SUCCESS);
9620: }
9622: /*@
9623: DMReorderSectionGetType - Get the reordering type for the local section
9625: Not collective
9627: Input Parameter:
9628: . dm - The DM
9630: Output Parameter:
9631: . reorder - The reordering method
9633: Level: intermediate
9635: .seealso: `DMReorderSetDefault()`, `DMReorderSectionGetDefault()`
9636: @*/
9637: PetscErrorCode DMReorderSectionGetType(DM dm, MatOrderingType *reorder)
9638: {
9639: PetscFunctionBegin;
9641: PetscAssertPointer(reorder, 2);
9642: *reorder = NULL;
9643: PetscTryMethod(dm, "DMReorderSectionGetType_C", (DM, MatOrderingType *), (dm, reorder));
9644: PetscFunctionReturn(PETSC_SUCCESS);
9645: }